Industrial Environment Multi-Sensor Dataset for Vehicle Indoor Tracking with Wi-Fi, Inertial and Odometry Data

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2023-10-23 DOI:10.3390/data8100157
Ivo Silva , Cristiano Pendão, Joaquín Torres-Sospedra, Adriano Moreira
{"title":"Industrial Environment Multi-Sensor Dataset for Vehicle Indoor Tracking with Wi-Fi, Inertial and Odometry Data","authors":"Ivo Silva , Cristiano Pendão, Joaquín Torres-Sospedra, Adriano Moreira","doi":"10.3390/data8100157","DOIUrl":null,"url":null,"abstract":"This paper describes a dataset collected in an industrial setting using a mobile unit resembling an industrial vehicle equipped with several sensors. Wi-Fi interfaces collect signals from available Access Points (APs), while motion sensors collect data regarding the mobile unit’s movement (orientation and displacement). The distinctive features of this dataset include synchronous data collection from multiple sensors, such as Wi-Fi data acquired from multiple interfaces (including a radio map), orientation provided by two low-cost Inertial Measurement Unit (IMU) sensors, and displacement (travelled distance) measured by an absolute encoder attached to the mobile unit’s wheel. Accurate ground-truth information was determined using a computer vision approach that recorded timestamps as the mobile unit passed through reference locations. We assessed the quality of the proposed dataset by applying baseline methods for dead reckoning and Wi-Fi fingerprinting. The average positioning error for simple dead reckoning, without using any other absolute positioning technique, is 8.25 m and 11.66 m for IMU1 and IMU2, respectively. The average positioning error for simple Wi-Fi fingerprinting is 2.19 m when combining the RSSI information from five Wi-Fi interfaces. This dataset contributes to the fields of Industry 4.0 and mobile sensing, providing researchers with a resource to develop, test, and evaluate indoor tracking solutions for industrial vehicles.","PeriodicalId":36824,"journal":{"name":"Data","volume":"39 5","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data8100157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a dataset collected in an industrial setting using a mobile unit resembling an industrial vehicle equipped with several sensors. Wi-Fi interfaces collect signals from available Access Points (APs), while motion sensors collect data regarding the mobile unit’s movement (orientation and displacement). The distinctive features of this dataset include synchronous data collection from multiple sensors, such as Wi-Fi data acquired from multiple interfaces (including a radio map), orientation provided by two low-cost Inertial Measurement Unit (IMU) sensors, and displacement (travelled distance) measured by an absolute encoder attached to the mobile unit’s wheel. Accurate ground-truth information was determined using a computer vision approach that recorded timestamps as the mobile unit passed through reference locations. We assessed the quality of the proposed dataset by applying baseline methods for dead reckoning and Wi-Fi fingerprinting. The average positioning error for simple dead reckoning, without using any other absolute positioning technique, is 8.25 m and 11.66 m for IMU1 and IMU2, respectively. The average positioning error for simple Wi-Fi fingerprinting is 2.19 m when combining the RSSI information from five Wi-Fi interfaces. This dataset contributes to the fields of Industry 4.0 and mobile sensing, providing researchers with a resource to develop, test, and evaluate indoor tracking solutions for industrial vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业环境多传感器数据集,用于车辆室内跟踪与Wi-Fi,惯性和里程计数据
本文描述了一个在工业环境中收集的数据集,使用一个类似于配备了几个传感器的工业车辆的移动单元。Wi-Fi接口从可用的接入点(ap)收集信号,而运动传感器收集有关移动设备运动(方向和位移)的数据。该数据集的独特特征包括来自多个传感器的同步数据收集,例如从多个接口(包括无线电地图)获取的Wi-Fi数据,两个低成本惯性测量单元(IMU)传感器提供的方向,以及由移动单元车轮上的绝对编码器测量的位移(行进距离)。使用计算机视觉方法确定准确的地面真实信息,该方法记录移动单元通过参考位置时的时间戳。我们通过应用航位推算和Wi-Fi指纹的基线方法来评估所建议数据集的质量。在不使用任何其他绝对定位技术的情况下,IMU1和IMU2的简单航位推算平均定位误差分别为8.25 m和11.66 m。结合5个Wi-Fi接口的RSSI信息,简单Wi-Fi指纹识别的平均定位误差为2.19 m。该数据集有助于工业4.0和移动传感领域,为研究人员提供开发、测试和评估工业车辆室内跟踪解决方案的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1