{"title":"Molecular size exclusion effect extending the cycling stability of a non-aqueous redox flow battery","authors":"Sandeep Kumar Mohapatra, Kothandaraman Ramanujam, Sethuraman Sankararaman","doi":"10.1063/5.0167853","DOIUrl":null,"url":null,"abstract":"Non-aqueous organic redox flow batteries (NAORFBs) suffer from rapid capacity fading mainly due to the crossover of redox-active species across the membrane. Minimizing the crossover of redox-active species through ion exchange membranes remains a complex challenge in NAORFBs. To address the crossover issue, we approached the problem through a molecular size exclusion principle designing a dimer of viologen derivative as an anode material. Coupled with N-hexyl phenothiazine as a catholyte, a static cell was demonstrated, which exhibits an excellent cycling stability (100 cycles) with an average Coulombic efficiency of 90% at 10 mA cm−2 current density.","PeriodicalId":486383,"journal":{"name":"APL Energy","volume":"75 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0167853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-aqueous organic redox flow batteries (NAORFBs) suffer from rapid capacity fading mainly due to the crossover of redox-active species across the membrane. Minimizing the crossover of redox-active species through ion exchange membranes remains a complex challenge in NAORFBs. To address the crossover issue, we approached the problem through a molecular size exclusion principle designing a dimer of viologen derivative as an anode material. Coupled with N-hexyl phenothiazine as a catholyte, a static cell was demonstrated, which exhibits an excellent cycling stability (100 cycles) with an average Coulombic efficiency of 90% at 10 mA cm−2 current density.
非水有机氧化还原液流电池(NAORFBs)容量快速衰减主要是由于氧化还原活性物质在膜上的交叉。在naorfb中,最小化氧化还原活性物质通过离子交换膜的交叉仍然是一个复杂的挑战。为了解决交叉问题,我们通过分子尺寸排除原理来解决这个问题,设计了一种紫素衍生物的二聚体作为阳极材料。在10 mA cm−2电流密度下,n -己基吩噻嗪偶联成一种静态电池,具有良好的循环稳定性(100次循环),平均库仑效率为90%。