Morphological and mechanical characterization of a novel porous silicon membrane used in a lung-on-a-chip system

IF 0.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY MRS Advances Pub Date : 2023-10-23 DOI:10.1557/s43580-023-00667-2
Sahra Genc, Sally Thompson, Owen Hill, Leif Gislason, Dakota Rodriguez, Farjana Showme, Alex Motler, Sarah M. Schreiner, Adrian Gestos, Virginia L. Ferguson, Jeff Jessing
{"title":"Morphological and mechanical characterization of a novel porous silicon membrane used in a lung-on-a-chip system","authors":"Sahra Genc, Sally Thompson, Owen Hill, Leif Gislason, Dakota Rodriguez, Farjana Showme, Alex Motler, Sarah M. Schreiner, Adrian Gestos, Virginia L. Ferguson, Jeff Jessing","doi":"10.1557/s43580-023-00667-2","DOIUrl":null,"url":null,"abstract":"Abstract In the last decade, organ-on-a-chip technology has been researched as an alternative to animal and cell culture models (Buhidma et al. in NPJ Parkinson’s Dis, 2020; Pearce et al. in Eur Cells Mater 13:1–10, 2007; Huh et al. in Nat Protoc 8:2135–2157, 2013). While extensive research has focused on the biological functions of these chips, there has been limited exploration of functional materials that can accurately replicate the biological environment. Our group concentrated on a lung-on-a-chip featuring a newly fabricated porous silicon bio-membrane. This bio-membrane mimics the interstitial space found between epithelial and endothelial cells in vivo, with a thickness of approximately 1 μm (Ingber in Cell 164:1105–1109, 2016). This study aims to establish a fabrication method for producing a thin, uniform porous silicon membrane with a predictable reduced modulus . We conducted mechanical and morphological characterization using scanning electron microscopy and nanoindentation. A small, parametric study was conducted to determine the reduced modulus of the porous silicon and how it may relate to the morphological features of the membrane. We compare our results to other works. Graphical Abstract","PeriodicalId":19015,"journal":{"name":"MRS Advances","volume":"35 7","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43580-023-00667-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the last decade, organ-on-a-chip technology has been researched as an alternative to animal and cell culture models (Buhidma et al. in NPJ Parkinson’s Dis, 2020; Pearce et al. in Eur Cells Mater 13:1–10, 2007; Huh et al. in Nat Protoc 8:2135–2157, 2013). While extensive research has focused on the biological functions of these chips, there has been limited exploration of functional materials that can accurately replicate the biological environment. Our group concentrated on a lung-on-a-chip featuring a newly fabricated porous silicon bio-membrane. This bio-membrane mimics the interstitial space found between epithelial and endothelial cells in vivo, with a thickness of approximately 1 μm (Ingber in Cell 164:1105–1109, 2016). This study aims to establish a fabrication method for producing a thin, uniform porous silicon membrane with a predictable reduced modulus . We conducted mechanical and morphological characterization using scanning electron microscopy and nanoindentation. A small, parametric study was conducted to determine the reduced modulus of the porous silicon and how it may relate to the morphological features of the membrane. We compare our results to other works. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肺芯片系统的新型多孔硅膜的形态学和力学特性
在过去的十年中,器官芯片技术被研究作为动物和细胞培养模型的替代方法(Buhidma et al. In NPJ Parkinson 's Dis, 2020;Pearce et al. journal of chengdu electro - mechaical, 2007;Huh et al. in Nat Protoc 8:2135-2157, 2013)。虽然广泛的研究集中在这些芯片的生物功能上,但对能够准确复制生物环境的功能材料的探索有限。我们的团队专注于一种肺芯片,其特点是一种新制造的多孔硅生物膜。这种生物膜模拟了体内上皮细胞和内皮细胞之间的间隙,厚度约为1 μm (Ingber in Cell 164:1105-1109, 2016)。本研究旨在建立一种制造方法,用于生产具有可预测的降低模量的薄而均匀的多孔硅膜。我们使用扫描电子显微镜和纳米压痕进行了机械和形态表征。一个小的,参数化的研究进行了确定减少的多孔硅的模量,以及它如何可能涉及到膜的形态特征。我们将我们的结果与其他作品进行比较。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Advances
MRS Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
0.00%
发文量
184
期刊最新文献
Sorption behavior of cesium ions to Mg-containing calcium silicate hydrate in a co-precipitation process Pair potential description on phase stability variations in close-packed polytypism Saffron extract-mediated synthesis of Cu(OH)2 nanocomposite: Structural and photocatalytic activity investigation Detection of wells in images of deformed 96-wells plates A facile growth, optical behavior of organic nonlinear optical crystal: 4-bromo-2-methylbenzonitrile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1