Penalized sieve estimation of zero-inefficiency stochastic frontiers

IF 2.3 3区 经济学 Q2 ECONOMICS Journal of Applied Econometrics Pub Date : 2023-10-23 DOI:10.1002/jae.3008
Jun Cai, William C. Horrace, Christopher F. Parmeter
{"title":"Penalized sieve estimation of zero-inefficiency stochastic frontiers","authors":"Jun Cai,&nbsp;William C. Horrace,&nbsp;Christopher F. Parmeter","doi":"10.1002/jae.3008","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Stochastic frontier models for cross-sectional data typically assume that the one-sided distribution of firm-level inefficiency is continuous. However, it may be reasonable to hypothesize that inefficiency is continuous except for a discrete mass at zero capturing fully efficient firms (zero-inefficiency). We propose a sieve-type density estimator for such a mixture distribution in a nonparametric stochastic frontier setting under a unimodality-at-zero assumption. Consistency, rates of convergence and asymptotic normality of the estimators are established, as well as a test of the zero-inefficiency hypothesis. Simulations and two applications are provided to demonstrate the practicality of the method.</p>\n </div>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.3008","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic frontier models for cross-sectional data typically assume that the one-sided distribution of firm-level inefficiency is continuous. However, it may be reasonable to hypothesize that inefficiency is continuous except for a discrete mass at zero capturing fully efficient firms (zero-inefficiency). We propose a sieve-type density estimator for such a mixture distribution in a nonparametric stochastic frontier setting under a unimodality-at-zero assumption. Consistency, rates of convergence and asymptotic normality of the estimators are established, as well as a test of the zero-inefficiency hypothesis. Simulations and two applications are provided to demonstrate the practicality of the method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零效率随机前沿的有罚筛估计
横截面数据的随机前沿模型通常假设公司层面的低效率单边分布是连续的。然而,我们可以合理地假设,低效率是连续的,只有零点处的离散质量捕捉到了完全有效的企业(零低效率)。我们在非参数随机前沿设置中,根据零点单模态假设,为这种混合分布提出了一种筛型密度估算器。我们建立了估计器的一致性、收敛率和渐近正态性,并对零无效率假设进行了检验。还提供了模拟和两个应用实例,以证明该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
63
期刊介绍: The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.
期刊最新文献
Issue Information Issue Information Heterogeneous autoregressions in short T panel data models Panel treatment effects measurement: Factor or linear projection modelling? The benefits of forecasting inflation with machine learning: New evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1