Optimization of Artificial Viscosity in Production Codes Based on Gaussian Regression Surrogate Models

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Communications on Applied Mathematics and Computation Pub Date : 2023-04-03 DOI:10.1007/s42967-023-00251-3
Vitaliy Gyrya, Evan Lieberman, Mark Kenamond, Mikhail Shashkov
{"title":"Optimization of Artificial Viscosity in Production Codes Based on Gaussian Regression Surrogate Models","authors":"Vitaliy Gyrya, Evan Lieberman, Mark Kenamond, Mikhail Shashkov","doi":"10.1007/s42967-023-00251-3","DOIUrl":null,"url":null,"abstract":"To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"1 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00251-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯回归代理模型的生产代码人工粘度优化
为了使用交错网格拉格朗日流体力学准确地模拟激波流动,必须引入人工粘度将动能转化为内能,从而增加跨激波的熵。确定人工粘度的适当强度是一门艺术,在很大程度上取决于研究人员的具体问题和经验。本研究的目的是将寻找合适的人工粘度强度的问题作为一个优化问题,并使用机器学习(ML)工具解决这个问题,特别是使用基于高斯过程回归(GPR)和贝叶斯分析的代理模型。我们描述了优化方法,并讨论了其实现的各种实际细节。我们应用该方法的包含激波的问题都已经在LANL代码FLAG(伯顿在交错网格自由拉格朗日流体力学的连性结构和差分技术中)中实现,UCRL-JC-110555,劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔,1992年,1992年,在非结构化网格的流体动力守恒定律的一致有限体积离散化中,技术代表CRL-JC-118788,劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔,1992,1994,非结构多面体网格守恒定律的多维离散化,技术代表UCRL-JC-118306,劳伦斯利弗莫尔国家实验室,利弗莫尔,CA, 1992,1994,在FLAG中,一个多维,多网格,自适应自由拉格朗日,流体力学代码。见:NECDC, 1992)。首先,我们应用机器学习来寻找不同强度的孤立冲击问题的最优值。其次,基于Zel ' ovich-von Neumann-Doring (ZND) (Fickett and Davis在detonation: theory and experiment)一书中的理论和实验,我们应用ML对一维传播爆轰问题的粘度进行优化。多佛物理学方面的书。Dover Publications, Mineola, 2000)使用反应性燃烧模型的爆轰理论。我们比较了这些问题的默认值(目前在FLAG中使用的值)和优化后的人工粘度值的结果,证明了计算精度有显著提高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
期刊最新文献
On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids A New Class of Simple, General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems Conforming P3 Divergence-Free Finite Elements for the Stokes Equations on Subquadrilateral Triangular Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1