Which Effect Size Calculation is the Best to Estimate the Population Effect Size in the Welch T Test?

None Yi Zhou, None Xinyue Ren, None Gordon Brooks
{"title":"Which Effect Size Calculation is the Best to Estimate the Population Effect Size in the Welch T Test?","authors":"None Yi Zhou, None Xinyue Ren, None Gordon Brooks","doi":"10.56801/jmasm.v22.i1.3","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to use Monte Carlo method to detect the most precise and least biased effect sizes calculations in a variety of conditions. The results show that there is no big difference to obtain effect sizes of using mean difference or trimmed mean difference as denominator. Cohen’s dA proves to be the less unbiased but more precise across all the conditions in Welch t test. It is worthwhile to notice that Hedges’ g remains the same as Cohen’s dP across all the conditions of Welch t test. When group sample sizes are equal, no matter which population effect size formula are applied, Cohen’s dA, Cohen’s dP, and Hedges’ g are the same estimates given the bias statistics.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/jmasm.v22.i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to use Monte Carlo method to detect the most precise and least biased effect sizes calculations in a variety of conditions. The results show that there is no big difference to obtain effect sizes of using mean difference or trimmed mean difference as denominator. Cohen’s dA proves to be the less unbiased but more precise across all the conditions in Welch t test. It is worthwhile to notice that Hedges’ g remains the same as Cohen’s dP across all the conditions of Welch t test. When group sample sizes are equal, no matter which population effect size formula are applied, Cohen’s dA, Cohen’s dP, and Hedges’ g are the same estimates given the bias statistics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在韦尔奇T检验中,哪种效应量计算方法最适合估计总体效应量?
本研究的目的是使用蒙特卡罗方法来检测各种条件下最精确和最小偏差的效应大小计算。结果表明,以平均差或裁剪平均差为分母得到的效应量没有太大差异。在韦尔奇t检验的所有条件下,Cohen的dA被证明是不那么公正但更精确的。值得注意的是,在韦尔奇t检验的所有条件下,赫奇斯的g值与科恩的dP值保持一致。当组样本量相等时,无论采用哪种总体效应量公式,在给定偏差统计量的情况下,Cohen的dA、Cohen的dP和Hedges的g都是相同的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
期刊最新文献
The Performance of the Maximum Likelihood Estimator for the Bell Distribution for Count Data Proportionality Adjusted Ratio-Type Calibration Estimators of Population Mean Under Stratified Sampling Moment Properties of Record Values from Rayleigh Lomax Distribution and Characterization Smoothing of Estimators of Population mean using Calibration Technique with Sample Errors Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1