Zafer Kayatas, Dieter Bestle, Pascal Bestle, Robin Reick
{"title":"Generation of Realistic Cut-In Maneuvers to Support Safety Assessment of Advanced Driver Assistance Systems","authors":"Zafer Kayatas, Dieter Bestle, Pascal Bestle, Robin Reick","doi":"10.3390/applmech4040054","DOIUrl":null,"url":null,"abstract":"Advanced Driver Assistance Systems (ADASs) attract constantly growing attention from academics and industry as more and more vehicles are equipped with such technology. Level-3 ADASs, like the DRIVE PILOT from Mercedes-Benz AG, are expected to appear more and more on the market in the next few years. However, automated driving raises new challenges for the system validation required for series approval. The replacement of a human driver as control instance expands the range of variants to be validated and verified. The scenario-based validation approach meets these challenges by simulating only specific safety-critical driving scenarios using software-in-the-loop simulation. According to the current state of the art, various safety-relevant driving scenarios are parameterized as idealized maneuvers which, however, requires a great modeling effort, and at the same time, such simplifications may bias the safety assessment. Therefore, a novel approach using artificial intelligence methods is taken here to generate more realistic driving scenarios. Namely, a generative model based on a variational autoencoder is trained with real-world data and then used to generate trajectories for a specific driving maneuver. Through a comprehensive analysis of the synthetic trajectories, it becomes clear that the generative model can learn and replicate relevant properties of real driving data as well as their probabilistics much better than the mathematical models used so far. Furthermore, it is proven that both the statistical properties and the time characteristics are almost equal to those of the input data.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"66 1","pages":"0"},"PeriodicalIF":12.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applmech4040054","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced Driver Assistance Systems (ADASs) attract constantly growing attention from academics and industry as more and more vehicles are equipped with such technology. Level-3 ADASs, like the DRIVE PILOT from Mercedes-Benz AG, are expected to appear more and more on the market in the next few years. However, automated driving raises new challenges for the system validation required for series approval. The replacement of a human driver as control instance expands the range of variants to be validated and verified. The scenario-based validation approach meets these challenges by simulating only specific safety-critical driving scenarios using software-in-the-loop simulation. According to the current state of the art, various safety-relevant driving scenarios are parameterized as idealized maneuvers which, however, requires a great modeling effort, and at the same time, such simplifications may bias the safety assessment. Therefore, a novel approach using artificial intelligence methods is taken here to generate more realistic driving scenarios. Namely, a generative model based on a variational autoencoder is trained with real-world data and then used to generate trajectories for a specific driving maneuver. Through a comprehensive analysis of the synthetic trajectories, it becomes clear that the generative model can learn and replicate relevant properties of real driving data as well as their probabilistics much better than the mathematical models used so far. Furthermore, it is proven that both the statistical properties and the time characteristics are almost equal to those of the input data.
期刊介绍:
Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.