Insights into the Role of Oxidative Stress in Hepatocellular Carcinoma Development

Yuanyuan Li, Yang Yu, Lei Yang, Rui Wang
{"title":"Insights into the Role of Oxidative Stress in Hepatocellular Carcinoma Development","authors":"Yuanyuan Li, Yang Yu, Lei Yang, Rui Wang","doi":"10.31083/j.fbl2811286","DOIUrl":null,"url":null,"abstract":"Oxidative stress (OS) is linked to hepatocellular carcinoma (HCC) progression. HCC may develop as a result of genetic changes, including oxidative injury to both nuclear and mitochondrial DNA. Signaling pathways regulated by OS, such as Wnt/β-catenin and Notch pathways, are vital regulators in developing HCC. OS-mediated activation of transcription factors, including nuclear factor-κB and p53, among others, is capable of regulating the redox state of HCC cells. OS also affects the tumor microenvironment, which, in turn, regulates HCC progression. In HCC, reactive oxygen species (ROS) can potentially enhance tumor cell proliferation, metastasis, and resistance to treatment. However, elevated ROS levels can cause cytotoxicity and trigger apoptosis in HCC cells. This review highlights and explores potential oxidative stress-related treatment targets in HCC, offering novel insights for clinical therapies.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2811286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress (OS) is linked to hepatocellular carcinoma (HCC) progression. HCC may develop as a result of genetic changes, including oxidative injury to both nuclear and mitochondrial DNA. Signaling pathways regulated by OS, such as Wnt/β-catenin and Notch pathways, are vital regulators in developing HCC. OS-mediated activation of transcription factors, including nuclear factor-κB and p53, among others, is capable of regulating the redox state of HCC cells. OS also affects the tumor microenvironment, which, in turn, regulates HCC progression. In HCC, reactive oxygen species (ROS) can potentially enhance tumor cell proliferation, metastasis, and resistance to treatment. However, elevated ROS levels can cause cytotoxicity and trigger apoptosis in HCC cells. This review highlights and explores potential oxidative stress-related treatment targets in HCC, offering novel insights for clinical therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化应激在肝细胞癌发展中的作用
氧化应激(OS)与肝细胞癌(HCC)的进展有关。HCC可能是遗传改变的结果,包括核和线粒体DNA的氧化损伤。由OS调节的信号通路,如Wnt/β-catenin和Notch通路,是HCC发生的重要调节因子。os介导的转录因子的激活,包括核因子-κB和p53等,能够调节HCC细胞的氧化还原状态。OS还影响肿瘤微环境,进而调节HCC的进展。在HCC中,活性氧(ROS)可以潜在地增强肿瘤细胞的增殖、转移和对治疗的抵抗。然而,在HCC细胞中,ROS水平升高可引起细胞毒性并引发细胞凋亡。这篇综述强调并探讨了HCC中潜在的氧化应激相关治疗靶点,为临床治疗提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Differential Expression Analysis Based on Ensemble Strategy on miRNA Profiles of Kidney Clear Cell Carcinoma Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats Anoikis Patterns in Cervical Cancer: Identification of Subgroups and Construction of a Novel Risk Model for Predicting Prognosis and Immune Response Identification of Whole-Blood DNA Methylation Signatures and Rules Associated with COVID-19 Severity Preconditioning of Mesenchymal Stem Cells with Electromagnetic Fields and Its Impact on Biological Responses and “Fate”—Potential Use in Therapeutic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1