Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering

Lucy J. Fitschen , Timothy P. Newing , Nikolas P. Johnston , Charles E. Bell , Gökhan Tolun
{"title":"Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering","authors":"Lucy J. Fitschen ,&nbsp;Timothy P. Newing ,&nbsp;Nikolas P. Johnston ,&nbsp;Charles E. Bell ,&nbsp;Gökhan Tolun","doi":"10.1016/j.engmic.2023.100120","DOIUrl":null,"url":null,"abstract":"<div><p>Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious <em>in vitro</em> manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5′→3′ exonuclease and a single-strand annealing protein (SSAP or “annealase”). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in <em>E. coli:</em> the RecET system from <em>E. coli</em> Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000528/pdfft?md5=42fa03ae2d300bd225539962db8c44f3&pid=1-s2.0-S2667370323000528-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5′→3′ exonuclease and a single-strand annealing protein (SSAP or “annealase”). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现半个世纪后对催化重组的外切酶和退火酶蛋白的结构研究
重组工程是分子生物学家的重要工具,它可以直接在细胞内对细菌基因组进行简便、高效的操作,而无需使用限制性酶进行昂贵、费力的体外操作。重组工程背后的主要工作动力是噬菌体蛋白,它们能促进单链退火(SSA)同源重组途径,修复双链 DNA 断裂。虽然已有多篇综述对重组方法和应用进行了研究,但关注 SSA 途径中的关键蛋白(5′→3′外切酶和单链退火蛋白(SSAP 或 "退火酶"))的机制的综述却相对较少。通过比较 RecT 和 Redβ 退火酶以及 RecE 和 λExo 外切酶的结构,我们对这些蛋白质的结构如何决定其功能有了新的认识。通过研究λExo和RecE外切酶的序列保守性,我们可以更深入地了解它们的关键功能特征。最终,随着重组工程在实验室中的加速和发展,更好地了解这一强大技术背后的蛋白质机制将推动未来改进和扩展功能的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Exploring interspecific interaction variability in microbiota: A review Proactive monitoring of changes in the microbial community structure in wastewater treatment bioreactors using phospholipid fatty acid analysis Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability The way to uncovering and utilizing marine microbial resources Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1