{"title":"Ultrafast photoelectron imaging with high spatiotemporal and energy resolution","authors":"YuLu QIN, Rui WANG, YunQuan LIU","doi":"10.1360/sspma-2022-0442","DOIUrl":null,"url":null,"abstract":"The foundation of the development of flexible semiconductor and micro-nano ultrafast response devices in the post-Moore era is to measure and manipulate ultrafast optical physical processes in new materials and devices with extreme spatiotemporal small-scale. The spatiotemporal-and energy-resolved photoemission electron microscopy (PEEM) combines the pump-probe optical scheme with the electron microscopic imaging technology and possesses femtosecond-nanometer time-space resolution. It has evolved into an excellent ultrafast microscopy technique for investigating nanophotonics and low-dimensional device physics, leading to the revolutionary development of plasmonics, semiconductor science and related cross-disciplinary studies. In this review, we have summarized the application of PEEM in micro-nano plasmonic function devices, high-order plasmonic vortex fields, plasmonic skyrmion, and low-dimensional semiconductors. Finally, we discussed the future opportunities of PEEM. the spatiotemporal and energy-resolved photoemission electron microscope, plasmonic function devices, high-order plasmonic vortices, plasmonic skyrmion, low dimensional semiconductor materials PACS","PeriodicalId":44892,"journal":{"name":"Scientia Sinica-Physica Mechanica & Astronomica","volume":"13 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Sinica-Physica Mechanica & Astronomica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/sspma-2022-0442","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The foundation of the development of flexible semiconductor and micro-nano ultrafast response devices in the post-Moore era is to measure and manipulate ultrafast optical physical processes in new materials and devices with extreme spatiotemporal small-scale. The spatiotemporal-and energy-resolved photoemission electron microscopy (PEEM) combines the pump-probe optical scheme with the electron microscopic imaging technology and possesses femtosecond-nanometer time-space resolution. It has evolved into an excellent ultrafast microscopy technique for investigating nanophotonics and low-dimensional device physics, leading to the revolutionary development of plasmonics, semiconductor science and related cross-disciplinary studies. In this review, we have summarized the application of PEEM in micro-nano plasmonic function devices, high-order plasmonic vortex fields, plasmonic skyrmion, and low-dimensional semiconductors. Finally, we discussed the future opportunities of PEEM. the spatiotemporal and energy-resolved photoemission electron microscope, plasmonic function devices, high-order plasmonic vortices, plasmonic skyrmion, low dimensional semiconductor materials PACS