Using machine learning for cutting tool condition monitoring and prediction during machining of tungsten

IF 3.7 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Computer Integrated Manufacturing Pub Date : 2023-09-15 DOI:10.1080/0951192x.2023.2257648
Samuel Omole, Hakan Dogan, Alexander J G Lunt, Simon Kirk, Alborz Shokrani
{"title":"Using machine learning for cutting tool condition monitoring and prediction during machining of tungsten","authors":"Samuel Omole, Hakan Dogan, Alexander J G Lunt, Simon Kirk, Alborz Shokrani","doi":"10.1080/0951192x.2023.2257648","DOIUrl":null,"url":null,"abstract":"Machining of single-phase tungsten, used as a plasma facing material in fusion energy reactors, is commonly associated with rapid tool wear and short tool life. Conventional methods of monitoring tool wear or changing cutting tools after a predetermined period are inefficient and can lead to unnecessary tool change or risk damaging the workpiece. Tool wear can adversely affect the surface finish and dimensional tolerances of machined parts. Predicting its onset can avoid this critical damage whilst ensuring maximum tool life is utilised. In this paper, firstly the tool life results in end milling single-phase tungsten using different cutting tool geometries and cutting speeds are provided for the first time. A novel method is proposed by combining sensor signal prediction and classification machine learning models. It works by forecasting the cutting tool bending moment signal which is then used for predicting future cutting tool condition in end milling of pure dense tungsten. A series of machining experiments, covering the whole life of a cutting tool, were performed to collect the sensor signals. The current time series signal from the sensory tool holder is employed to forecast the future signal by training a 1D convolutional neural network (1D CNN) and an artificial neural network (ANN). The forecasted signal is then used to predict the state of the cutting tool in the future. Machine learning classifiers namely, random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost) supervised learning models were trained and validated on actual sensor signals to correlate the tool conditions with specific sensor signal features. The investigations revealed that the 1D CNN performed best in forecasting the time series sensor signal whilst achieving a mean absolute error of 3.37. In addition, the RF, when trained on Wavelet Scattering features, resulted in the most accurate classification of sensor signals for tool condition detection. The analysis showed that the combination of 1D CNN signal forecasting, feature extraction through statistical analyses and RF classifier performs best in predicting the state of a cutting tool in near future. Using this method allows for decision making for changing the tool whilst ensuring that the maximum useful life of a cutting tool is utilised. It also enables preventing undesired damage to the machined surface due to late detection of tool wear or delays in taking appropriate actions. The application of this method can reliably reduce the manufacturing costs and resource consumption associated with cutting tools for machining tungsten and minimise tool wear induced damage to the workpiece.","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":"22 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0951192x.2023.2257648","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Machining of single-phase tungsten, used as a plasma facing material in fusion energy reactors, is commonly associated with rapid tool wear and short tool life. Conventional methods of monitoring tool wear or changing cutting tools after a predetermined period are inefficient and can lead to unnecessary tool change or risk damaging the workpiece. Tool wear can adversely affect the surface finish and dimensional tolerances of machined parts. Predicting its onset can avoid this critical damage whilst ensuring maximum tool life is utilised. In this paper, firstly the tool life results in end milling single-phase tungsten using different cutting tool geometries and cutting speeds are provided for the first time. A novel method is proposed by combining sensor signal prediction and classification machine learning models. It works by forecasting the cutting tool bending moment signal which is then used for predicting future cutting tool condition in end milling of pure dense tungsten. A series of machining experiments, covering the whole life of a cutting tool, were performed to collect the sensor signals. The current time series signal from the sensory tool holder is employed to forecast the future signal by training a 1D convolutional neural network (1D CNN) and an artificial neural network (ANN). The forecasted signal is then used to predict the state of the cutting tool in the future. Machine learning classifiers namely, random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost) supervised learning models were trained and validated on actual sensor signals to correlate the tool conditions with specific sensor signal features. The investigations revealed that the 1D CNN performed best in forecasting the time series sensor signal whilst achieving a mean absolute error of 3.37. In addition, the RF, when trained on Wavelet Scattering features, resulted in the most accurate classification of sensor signals for tool condition detection. The analysis showed that the combination of 1D CNN signal forecasting, feature extraction through statistical analyses and RF classifier performs best in predicting the state of a cutting tool in near future. Using this method allows for decision making for changing the tool whilst ensuring that the maximum useful life of a cutting tool is utilised. It also enables preventing undesired damage to the machined surface due to late detection of tool wear or delays in taking appropriate actions. The application of this method can reliably reduce the manufacturing costs and resource consumption associated with cutting tools for machining tungsten and minimise tool wear induced damage to the workpiece.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术对钨加工过程中的刀具状态进行监测和预测
在聚变能反应堆中用作等离子体表面材料的单相钨的加工通常与刀具磨损快和刀具寿命短有关。监测刀具磨损或在预定周期后更换刀具的传统方法效率低下,可能导致不必要的刀具更换或有损坏工件的风险。刀具磨损会对加工零件的表面光洁度和尺寸公差产生不利影响。预测其开始可以避免这种严重的损害,同时确保最大限度地利用工具寿命。本文首次给出了不同刀具几何形状和切削速度对单相钨立铣削刀具寿命的影响。提出了一种将传感器信号预测与分类机器学习模型相结合的新方法。该方法通过对纯密钨立铣削过程中刀具弯矩信号的预测来预测未来刀具状态。在刀具的整个使用寿命期间进行一系列加工实验,采集传感器信号。通过训练一维卷积神经网络(1D CNN)和人工神经网络(ANN),利用来自感官刀柄的当前时间序列信号预测未来信号。然后用预测的信号来预测刀具未来的状态。机器学习分类器即随机森林(RF),支持向量机(SVM)和极端梯度增强(XGBoost)监督学习模型在实际传感器信号上进行训练和验证,以将工具条件与特定传感器信号特征关联起来。研究表明,一维CNN在预测时间序列传感器信号方面表现最好,平均绝对误差为3.37。此外,当对小波散射特征进行训练时,RF可以对传感器信号进行最准确的分类,用于工具状态检测。分析表明,结合1D CNN信号预测、统计分析特征提取和RF分类器对刀具近期状态的预测效果最好。使用这种方法可以在确保切削刀具最大使用寿命的同时做出更换刀具的决策。它还可以防止由于刀具磨损检测晚或采取适当措施的延迟而对加工表面造成的意外损坏。该方法的应用可以可靠地降低钨加工刀具的制造成本和资源消耗,并最大限度地减少刀具磨损对工件的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
9.80%
发文量
73
审稿时长
10 months
期刊介绍: International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years. IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.
期刊最新文献
Integration of extended reality and CAE in the context of industry 4.0 Real-time tool condition monitoring with the internet of things and machine learning algorithms Flexible automation and intelligent manufacturing highlights: special issue editorial State of the art and future directions of digital twin-enabled smart assembly automation in discrete manufacturing industries Tool wear prediction method based on dual-attention mechanism network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1