A posteriori error estimates for fully coupled McKean–Vlasov forward-backward SDEs

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED IMA Journal of Numerical Analysis Pub Date : 2023-09-15 DOI:10.1093/imanum/drad060
Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang
{"title":"<i>A posteriori</i> error estimates for fully coupled McKean–Vlasov forward-backward SDEs","authors":"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang","doi":"10.1093/imanum/drad060","DOIUrl":null,"url":null,"abstract":"Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad060","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完全耦合McKean-Vlasov正向向后SDEs的后验误差估计
完全耦合McKean-Vlasov正倒向随机微分方程(MV-FBSDEs)是求解大种群优化问题的自然方法。MV-FBSDEs通常需要Picard迭代和嵌套条件期望的近似,判断给定数值解的质量通常是困难的。本文提出了一种后验误差估计器,用于量化时间网格上任意生成的逼近的L^2逼近误差。我们建立了误差估计量等价于给定数值解与正演欧拉离散MV-FBSDE解之间的全局逼近误差。分析中的一个关键和具有挑战性的步骤是证明这个欧拉近似对MV-FBSDE的稳定性,这是一个独立的兴趣。我们进一步证明,对于足够精细的时间网格,求解连续MV-FBSDE的数值解的精度也可以通过误差估计器来测量。误差估计证明了使用基于残差的算法求解MV-FBSDEs是正确的。对平均场控制和博弈引起的MV-FBSDEs进行了数值实验,验证了误差估计器的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
期刊最新文献
A fast algorithm for smooth convex minimization problems and its application to inverse source problems Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems Optimal error analysis of the normalized tangent plane FEM for Landau–Lifshitz–Gilbert equation Discontinuous Galerkin discretization of coupled poroelasticity–elasticity problems Convergence and quasi-optimality of an AFEM for the Dirichlet boundary control problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1