Artificial neural network assisted multi-objective optimization of a methane-fed DIR-SOFC system with waste heat recovery

IF 1.1 4区 工程技术 Q4 THERMODYNAMICS Thermal Science Pub Date : 2023-01-01 DOI:10.2298/tsci2304413a
Unsal Aybek, Lutfu Namli, Mustafa Ozbey, Bekir Dogan
{"title":"Artificial neural network assisted multi-objective optimization of a methane-fed DIR-SOFC system with waste heat recovery","authors":"Unsal Aybek, Lutfu Namli, Mustafa Ozbey, Bekir Dogan","doi":"10.2298/tsci2304413a","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to enhance the performance of solid oxide fuel cell systems. For this purpose, a mathematical model of a direct internal reforming (DIR) methane-fed solid oxide fuel cell system with waste heat recovery was designed in the engineering equation solver program. We optimised the performance of the solid oxide fuel cell using a genetic algorithm and TOPSIS technique considering exergy, power, and environmental analyzes. An ANN working with the Levenberg-Marquardt training function was designed in the MATLprogram to create the decision matrix to which the TOPSIS method will be applied. According to the power optimization, 786 kW net power was obtained from the system. In exergetic optimization, the exergy efficiency was found to be 57.6%. In environmental optimization, the environmental impact was determined as 330.6 kgCO2/MWh. According to the multi-objective optimization results, the exergy efficiency, the net power of the solid oxide fuel cell system, and the environmental impact were 504.1 kW, 40.08%, and 475.4 kgCO2/MWh.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"80 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tsci2304413a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this study is to enhance the performance of solid oxide fuel cell systems. For this purpose, a mathematical model of a direct internal reforming (DIR) methane-fed solid oxide fuel cell system with waste heat recovery was designed in the engineering equation solver program. We optimised the performance of the solid oxide fuel cell using a genetic algorithm and TOPSIS technique considering exergy, power, and environmental analyzes. An ANN working with the Levenberg-Marquardt training function was designed in the MATLprogram to create the decision matrix to which the TOPSIS method will be applied. According to the power optimization, 786 kW net power was obtained from the system. In exergetic optimization, the exergy efficiency was found to be 57.6%. In environmental optimization, the environmental impact was determined as 330.6 kgCO2/MWh. According to the multi-objective optimization results, the exergy efficiency, the net power of the solid oxide fuel cell system, and the environmental impact were 504.1 kW, 40.08%, and 475.4 kgCO2/MWh.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络辅助下的带余热回收的甲烷供气DIR-SOFC系统多目标优化
本研究的主要目的是提高固体氧化物燃料电池系统的性能。为此,在工程方程求解程序中,设计了具有余热回收的直接内重整(DIR)甲烷燃料电池系统的数学模型。我们使用遗传算法和TOPSIS技术优化了固体氧化物燃料电池的性能,同时考虑了能源、功率和环境分析。在matlab程序中设计了一个与Levenberg-Marquardt训练函数一起工作的人工神经网络,以创建将应用TOPSIS方法的决策矩阵。根据功率优化计算,系统净功率为786 kW。在火用优化中,其火用效率为57.6%。在环境优化方面,确定了环境影响为330.6 kgCO2/MWh。根据多目标优化结果,固体氧化物燃料电池系统的能效、净功率和环境影响分别为504.1 kW、40.08%和475.4 kgCO2/MWh。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science
Thermal Science 工程技术-热力学
CiteScore
2.70
自引率
29.40%
发文量
399
审稿时长
5 months
期刊介绍: The main aims of Thermal Science to publish papers giving results of the fundamental and applied research in different, but closely connected fields: fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes in single, and specifically in multi-phase and multi-component flows in high-temperature chemically reacting flows processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering, The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.
期刊最新文献
Perioperative Acute Kidney Injury: Implications, Approach, Prevention. Melting performance enhancement of FHD carreau non-Newtonian PCM in porous media: A geometrical evaluation Numerical study using a double grid to model the effect of the grooves of a vertical wall in a heated cavity on the natural convection of a nanofluid An experimental study on combustion and emissions characteristics in a dual-injection spark-assisted compression ignition engine fueled with PODE/gasoline Numerical analysis of injection parameters influence on experimental diesel engine performances and emissions using [CO] and [NOx] correlated by maximum in-cylinder pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1