House Price Prediction using Multiple Linear Regression and KNN

Fransiskus Dwi Febriyanto, Endroyono Endroyono, Yoyon Kusnendar
{"title":"House Price Prediction using Multiple Linear Regression and KNN","authors":"Fransiskus Dwi Febriyanto, Endroyono Endroyono, Yoyon Kusnendar","doi":"10.12962/jaree.v7i1.328","DOIUrl":null,"url":null,"abstract":"The transition of BPHTB management from central taxes to regional taxes is a continuation of the regional autonomy policy. The difference between the market value and the prevailing NJOP poses a challenge for the Sintang District Government in determining the Tax Object Acquisition Value (NPOP) as the basis for imposing BPHTB. Machine learning has been extensively explored for predictions and can be an alternative that can help predict NPOP, especially house prices. This study uses backward elimination and forward selection methods to select the features used in this study and multiple linear regression and K-Nearest Neighbor methods to make house price prediction models. The results of model performance measurement using RMSE, Multiple Linear Regression method with feature selection using backward elimination resulted in a better model with an RMSE value of 44.02 (million rupiahs) and an R2 value of 0.707.","PeriodicalId":32708,"journal":{"name":"JAREE Journal on Advanced Research in Electrical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAREE Journal on Advanced Research in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/jaree.v7i1.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transition of BPHTB management from central taxes to regional taxes is a continuation of the regional autonomy policy. The difference between the market value and the prevailing NJOP poses a challenge for the Sintang District Government in determining the Tax Object Acquisition Value (NPOP) as the basis for imposing BPHTB. Machine learning has been extensively explored for predictions and can be an alternative that can help predict NPOP, especially house prices. This study uses backward elimination and forward selection methods to select the features used in this study and multiple linear regression and K-Nearest Neighbor methods to make house price prediction models. The results of model performance measurement using RMSE, Multiple Linear Regression method with feature selection using backward elimination resulted in a better model with an RMSE value of 44.02 (million rupiahs) and an R2 value of 0.707.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元线性回归和KNN的房价预测
从中央税收到地方税收的转变是区域自治政策的延续。市场价值与现行的NJOP之间的差异给新塘区政府在确定税收客体收购价值(NPOP)作为征收BPHTB的基础时提出了挑战。机器学习已经被广泛用于预测,可以作为一种替代方法,帮助预测NPOP,尤其是房价。本研究采用后向消除法和前向选择法来选择本研究所使用的特征,并采用多元线性回归和k近邻法来制作房价预测模型。采用RMSE对模型性能进行测量,采用后向消去特征选择的多元线性回归方法得到了较好的模型,RMSE值为4402(百万印尼盾),R2值为0.707。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊最新文献
A new lossless passive snubber with simple structure for pulse width modulation DC-DC converters Prosumer-Based Optimization of Educational Building Grid Connected with Plug-in Electric Vehicle Integration using Modified Firefly Algorithm Pencak Silat Movement Classification Using CNN Based On Body Pose Load Frequency Control by Quadratic Regulator Approach with Compensating Pole using SIMULINK Temperature and Humidity Control System for 20 kV of Cubicle with Multiple Input Multiple Output Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1