Machine Learning-Accelerated Discovery of Novel 2D Ferromagnetic Materials with Strong Magnetization

Bingqian Song, Zhen Fan, Guangyong Jin, Yongli Song, Feng Pan, Chao Xin
{"title":"Machine Learning-Accelerated Discovery of Novel 2D Ferromagnetic Materials with Strong Magnetization","authors":"Bingqian Song, Zhen Fan, Guangyong Jin, Yongli Song, Feng Pan, Chao Xin","doi":"10.21203/rs.3.rs-2868040/v1","DOIUrl":null,"url":null,"abstract":"Abstract Two-dimensional ferromagnetic (2DFM) semiconductors (metals, half-metals, and so on) are important materials for next-generation nano-electronic and nano-spintronic devices. However, these kinds of materials remain scarce, and “trial and error” experiments and calculations are time-consuming and expensive. In the present work, to obtain optimal 2DFM materials with strong magnetization, we established a machine learning (ML) framework to search the 2D material space containing over 2417 samples, and identified 615 compounds whose magnetic orders was then determined via high-through-put first-principles calculations. Using ML algorithms, we trained two classification models and a regression model. The interpretability of the regression model was evaluated through SHAP value analysis. Unexpectedly, we found that Cr 2 NF 2 is a potential antiferromagnetic ferroelectric 2D multiferroic material. More importantly, 60 novel 2DFM candidates were predicted, and among them, 13 candidates have magnetic moments of > 7 µ B . Os 2 Cl 8 , Fe 3 GeSe 2 , and Mn 4 N 3 S 2 were predicted to be novel 2DFM semiconductors, metals, and half-metals, respectively. Our ML approach can accelerate the prediction of 2DFM materials with strong magnetization and reduce the computation time by more than one order of magnitude.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-2868040/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Two-dimensional ferromagnetic (2DFM) semiconductors (metals, half-metals, and so on) are important materials for next-generation nano-electronic and nano-spintronic devices. However, these kinds of materials remain scarce, and “trial and error” experiments and calculations are time-consuming and expensive. In the present work, to obtain optimal 2DFM materials with strong magnetization, we established a machine learning (ML) framework to search the 2D material space containing over 2417 samples, and identified 615 compounds whose magnetic orders was then determined via high-through-put first-principles calculations. Using ML algorithms, we trained two classification models and a regression model. The interpretability of the regression model was evaluated through SHAP value analysis. Unexpectedly, we found that Cr 2 NF 2 is a potential antiferromagnetic ferroelectric 2D multiferroic material. More importantly, 60 novel 2DFM candidates were predicted, and among them, 13 candidates have magnetic moments of > 7 µ B . Os 2 Cl 8 , Fe 3 GeSe 2 , and Mn 4 N 3 S 2 were predicted to be novel 2DFM semiconductors, metals, and half-metals, respectively. Our ML approach can accelerate the prediction of 2DFM materials with strong magnetization and reduce the computation time by more than one order of magnitude.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维铁磁半导体(金属、半金属等)是下一代纳米电子和纳米自旋电子器件的重要材料。然而,这类材料仍然稀缺,“试错”实验和计算既耗时又昂贵。在本工作中,为了获得具有强磁化的最佳2DFM材料,我们建立了一个机器学习(ML)框架来搜索包含超过2417个样品的二维材料空间,并通过高通量第一性原理计算确定了615种化合物的磁性顺序。使用ML算法,我们训练了两个分类模型和一个回归模型。通过SHAP值分析评价回归模型的可解释性。出乎意料的是,我们发现cr2nf2是一种潜在的反铁磁性铁电二维多铁性材料。更重要的是,预测了60个新的2DFM候选体,其中13个候选体的磁矩为>7µb。o2cl8、fe3ges2和mn4n3s2分别被预测为新型的2DFM半导体、金属和半金属。我们的机器学习方法可以加速强磁化2DFM材料的预测,并将计算时间减少一个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Event Reduction in Localization of DES Supervisory Control Semantic Relational Extraction via Learning Syntactic Structural Representation Vehicle Tracking System using Sensor Fusion with Signal Loss Compensation Automotive Tracking System with Signal Lost Compensation Bridging the Gap: Assessing the Integration of Artificial Intelligence in Healthcare for Improved Efficiency and Doctor Adaptability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1