Knowledge-Aware Dual-Channel Graph Neural Networks For Denoising Recommendation

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Journal Pub Date : 2023-08-11 DOI:10.1093/comjnl/bxad085
Hanwen Zhang, Li-e Wang, Zhigang Sun, Xianxian Li
{"title":"Knowledge-Aware Dual-Channel Graph Neural Networks For Denoising Recommendation","authors":"Hanwen Zhang, Li-e Wang, Zhigang Sun, Xianxian Li","doi":"10.1093/comjnl/bxad085","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge graph (KG) is introduced as side information into recommender systems, which can alleviate the sparsity and cold start problems in collaborative filtering. Existing studies mainly focus on modeling users’ historical behavior data and KG-based propagation. However, they have the limitation of ignoring noise information during recommendation. We consider that noise exists in two parts (i.e. KG and user-item interaction data). In this paper, we propose Knowledge-aware Dual-Channel Graph Neural Networks (KDGNN) to improve the recommendation performance by reducing the noise in the recommendation process. Specifically, (1) for the noise in KG, we design a personalized gating mechanism, namely dual-channel balancing mechanism, to block the propagation of redundant information in KG. (2) For the noise in user-item interaction data, we integrate personalized and knowledge-aware signals to capture user preferences fully and use personalized knowledge-aware attention to denoise user-item interaction data. Compared with existing KG-based methods, we aim to propose a knowledge-aware recommendation method from a new perspective of denoising. We perform performance analysis on three real-world datasets, and experiment results demonstrate that KDGNN achieves strongly competitive performance compared with several compelling state-of-the-art baselines.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"26 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Knowledge graph (KG) is introduced as side information into recommender systems, which can alleviate the sparsity and cold start problems in collaborative filtering. Existing studies mainly focus on modeling users’ historical behavior data and KG-based propagation. However, they have the limitation of ignoring noise information during recommendation. We consider that noise exists in two parts (i.e. KG and user-item interaction data). In this paper, we propose Knowledge-aware Dual-Channel Graph Neural Networks (KDGNN) to improve the recommendation performance by reducing the noise in the recommendation process. Specifically, (1) for the noise in KG, we design a personalized gating mechanism, namely dual-channel balancing mechanism, to block the propagation of redundant information in KG. (2) For the noise in user-item interaction data, we integrate personalized and knowledge-aware signals to capture user preferences fully and use personalized knowledge-aware attention to denoise user-item interaction data. Compared with existing KG-based methods, we aim to propose a knowledge-aware recommendation method from a new perspective of denoising. We perform performance analysis on three real-world datasets, and experiment results demonstrate that KDGNN achieves strongly competitive performance compared with several compelling state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识感知的双通道图神经网络去噪推荐
摘要将知识图(KG)作为辅助信息引入到推荐系统中,可以缓解协同过滤中的稀疏性和冷启动问题。现有的研究主要集中在用户历史行为数据建模和基于kg的传播上。然而,它们在推荐过程中存在忽略噪声信息的局限性。我们认为噪声存在于两部分(即KG和用户-项目交互数据)。本文提出了知识感知双通道图神经网络(KDGNN),通过降低推荐过程中的噪声来提高推荐性能。具体而言,(1)针对KG中的噪声,我们设计了一种个性化的门控机制,即双通道平衡机制,以阻止冗余信息在KG中的传播。(2)针对用户-物品交互数据中的噪声,我们将个性化和知识感知信号相结合,充分捕捉用户偏好,并利用个性化的知识感知注意力对用户-物品交互数据进行降噪。与现有的基于kg的推荐方法相比,我们旨在从去噪的新角度提出一种知识感知的推荐方法。我们对三个真实世界的数据集进行了性能分析,实验结果表明,与几个引人注目的最先进的基线相比,KDGNN实现了极具竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
期刊最新文献
Correction to: Automatic Diagnosis of Diabetic Retinopathy from Retinal Abnormalities: Improved Jaya-Based Feature Selection and Recurrent Neural Network Eager Term Rewriting For The Fracterm Calculus Of Common Meadows An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model Enhancing Auditory Brainstem Response Classification Based On Vision Transformer Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1