Utilizing the Vector Autoregression Model (VAR) for Short-Term Solar Irradiance Forecasting

Farah Z. Najdawi, Ruben Villarreal
{"title":"Utilizing the Vector Autoregression Model (VAR) for Short-Term Solar Irradiance Forecasting","authors":"Farah Z. Najdawi, Ruben Villarreal","doi":"10.4236/epe.2023.1511020","DOIUrl":null,"url":null,"abstract":"Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/epe.2023.1511020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用向量自回归模型(VAR)预报短期太阳辐照度
预测太阳辐照度是可再生能源部门的一项关键任务,因为它提供了有关太阳能电池板潜在能源生产的基本信息。本研究旨在利用向量自回归(VAR)模型预测旧金山湾区的太阳辐照水平和天气特征。结果表明,预测和实际太阳辐照度之间存在相关性,表明VAR模型在此任务中的有效性。然而,由于需要额外的天气特征来减少预测和实际观测之间的差异,该模式可能对该地区来说是不够的。此外,模型中当前的滞后阶数相对较低,限制了它从过去的观测中捕获所有相关信息的能力。因此,该模式的预报能力仅限于短期范围,最大范围为4小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Battery-Free Power Supply for Wireless Sensor Combining Photovoltaic Cells and Supercapacitors Influence of Leachate Recirculation on Landfill Degradation and Biogas Production Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells Performance Improvement of CIGS Solar Cell: A Simulation Approach by SCAPS-1D Kinetics and Process Studies of the Potential for Transformation of Biogas to Biomethane and Liquefaction using Cryogenic Liquid for Domestic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1