Transcriptome analysis showed the metabolic pathway of differentially expressed genes (DEGs) in resistant and susceptible soybean (Glycine max) to sclerotinia stem rot (SSR) and candidate gene mining
{"title":"Transcriptome analysis showed the metabolic pathway of differentially expressed genes (DEGs) in resistant and susceptible soybean (Glycine max) to sclerotinia stem rot (SSR) and candidate gene mining","authors":"Dongming Sun, Ruiqiong Li, Jinglin Ma, Shuo Qu, Ming Yuan, Zhenhong Yang, Changjun Zhou, Junrong Xu, Yuhang Zhan, Xue Zhao, Yingpeng Han, Weili Teng","doi":"10.1071/cp23171","DOIUrl":null,"url":null,"abstract":"Context Sclerotinia stem rot (SSR) is one of the diseases that seriously affect soybean yield, leading to heavy losses all over the world. A well-known SSR resistant variety is ‘Maple Arrow’.Aims In this study, transcriptome sequencing analysis of resistant variety ‘Maple Arrow’ and susceptible variety ‘Hefeng25’ was conducted to understand the resistance mechanism of resistant and susceptible soybean varieties to SSR and to look for candidate genes.Methods RNA sequencing of Maple Arrow and Hefeng25 generated 75.09GB and 64.97GB clean readings, respectively. In total, 417 differentially expressed genes (DEGs) were found among the different comparable groups. Gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis and haplotype analysis were performed for genes with different expression levels in Maple Arrow and Hefeng25.Key results It was found that DEGs from Maple Arrow and Hefeng25 were involved in the regulation of ‘oxidation–reduction process’, ‘regulation of transcription’, ‘amino acid metabolism’, ‘methylation’ and ‘membrane’, ‘integral component of membrane’ and ‘epidermal growth-factor receptor substrate 15’. In total, 31 haplotypes of 12 genes were screened out with significant or extremely significant differences among soybeans with different levels of SSR resistance.Conclusions These genes may be involved in the relevant pathways of soybean sclerotiniose.Implications To provide excellent gene resources for further disease-resistance breeding.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/cp23171","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Context Sclerotinia stem rot (SSR) is one of the diseases that seriously affect soybean yield, leading to heavy losses all over the world. A well-known SSR resistant variety is ‘Maple Arrow’.Aims In this study, transcriptome sequencing analysis of resistant variety ‘Maple Arrow’ and susceptible variety ‘Hefeng25’ was conducted to understand the resistance mechanism of resistant and susceptible soybean varieties to SSR and to look for candidate genes.Methods RNA sequencing of Maple Arrow and Hefeng25 generated 75.09GB and 64.97GB clean readings, respectively. In total, 417 differentially expressed genes (DEGs) were found among the different comparable groups. Gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis and haplotype analysis were performed for genes with different expression levels in Maple Arrow and Hefeng25.Key results It was found that DEGs from Maple Arrow and Hefeng25 were involved in the regulation of ‘oxidation–reduction process’, ‘regulation of transcription’, ‘amino acid metabolism’, ‘methylation’ and ‘membrane’, ‘integral component of membrane’ and ‘epidermal growth-factor receptor substrate 15’. In total, 31 haplotypes of 12 genes were screened out with significant or extremely significant differences among soybeans with different levels of SSR resistance.Conclusions These genes may be involved in the relevant pathways of soybean sclerotiniose.Implications To provide excellent gene resources for further disease-resistance breeding.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.