A groupwise approach for inferring heterogeneous treatment effects in causal inference

Chan Park, Hyunseung Kang
{"title":"A groupwise approach for inferring heterogeneous treatment effects in causal inference","authors":"Chan Park, Hyunseung Kang","doi":"10.1093/jrsssa/qnad125","DOIUrl":null,"url":null,"abstract":"Abstract Recently, there has been great interest in estimating the conditional average treatment effect using flexible machine learning methods. However, in practice, investigators often have working hypotheses about effect heterogeneity across pre-defined subgroups of study units, which we call the groupwise approach. The paper compares two modern ways to estimate groupwise treatment effects, a non-parametric approach and a semi-parametric approach, with the goal of better informing practice. Specifically, we compare (a) the underlying assumptions, (b) efficiency and adaption to the underlying data generating models, and (c) a way to combine the two approaches. We also discuss how to test a key assumption concerning the semi-parametric estimator and to obtain cluster-robust standard errors if study units in the same subgroups are correlated. We demonstrate our findings by conducting simulation studies and reanalysing the Early Childhood Longitudinal Study.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"69 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Recently, there has been great interest in estimating the conditional average treatment effect using flexible machine learning methods. However, in practice, investigators often have working hypotheses about effect heterogeneity across pre-defined subgroups of study units, which we call the groupwise approach. The paper compares two modern ways to estimate groupwise treatment effects, a non-parametric approach and a semi-parametric approach, with the goal of better informing practice. Specifically, we compare (a) the underlying assumptions, (b) efficiency and adaption to the underlying data generating models, and (c) a way to combine the two approaches. We also discuss how to test a key assumption concerning the semi-parametric estimator and to obtain cluster-robust standard errors if study units in the same subgroups are correlated. We demonstrate our findings by conducting simulation studies and reanalysing the Early Childhood Longitudinal Study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在因果推理中推断异质性治疗效果的分组方法
近年来,利用灵活的机器学习方法估计条件平均处理效果引起了人们的极大兴趣。然而,在实践中,研究人员通常对研究单位的预定义亚组的效应异质性有有效的假设,我们称之为分组方法。本文比较了两种估计群体治疗效果的现代方法,非参数方法和半参数方法,目的是更好地为实践提供信息。具体来说,我们比较了(a)基本假设,(b)对基本数据生成模型的效率和适应性,以及(c)结合这两种方法的方法。我们还讨论了如何检验关于半参数估计量的关键假设,以及如果同一子群中的研究单元是相关的,如何获得聚类鲁棒标准误差。我们通过进行模拟研究和重新分析早期儿童纵向研究来证明我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Bayesian approach to estimate annual bilateral migration flows for South America using census data Exploring Modeling with Data and Differential Equations Using R Calyampudi Radhakrishna (CR) Rao 1920–2023 Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups Where the bee sucks: a dynamic Bayesian network approach to decision support for pollinator abundance strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1