Defect Detection in Carbon Fiber-Reinforced Plate by Imaging of Mechanical Nonlinearity-Induced Sideband Vibrations

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-10-01 DOI:10.3390/vibration6040049
Tommaso Seresini, Sevilia Sunetchiieva, Helge Pfeiffer, Martine Wevers, Christ Glorieux
{"title":"Defect Detection in Carbon Fiber-Reinforced Plate by Imaging of Mechanical Nonlinearity-Induced Sideband Vibrations","authors":"Tommaso Seresini, Sevilia Sunetchiieva, Helge Pfeiffer, Martine Wevers, Christ Glorieux","doi":"10.3390/vibration6040049","DOIUrl":null,"url":null,"abstract":"Laser Doppler scanning vibrometry is used for imaging spectral vibration components in a carbon fiber-reinforced composite plate that contains a sub-surface delamination defect caused by hammer impact. The images reveal sideband generation at the location of the defect, reflecting mechanical nonlinearity-induced mixing between a high amplitude, low-frequency vibration that modulates the stress–strain behavior near the defect and a low amplitude, high-frequency probe vibration. In this work, a multifrequency probe is used to tackle the problem that the mixing coefficients are, in practice, frequency dependent. Based on the measured sideband amplitudes, a study is presented on the expected feasibility of detecting defects by a full field imaging scheme based on a photorefractive interferometer that is configured as a vibrometer acting as a bandpass filter around a sideband frequency of interest.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"10 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Laser Doppler scanning vibrometry is used for imaging spectral vibration components in a carbon fiber-reinforced composite plate that contains a sub-surface delamination defect caused by hammer impact. The images reveal sideband generation at the location of the defect, reflecting mechanical nonlinearity-induced mixing between a high amplitude, low-frequency vibration that modulates the stress–strain behavior near the defect and a low amplitude, high-frequency probe vibration. In this work, a multifrequency probe is used to tackle the problem that the mixing coefficients are, in practice, frequency dependent. Based on the measured sideband amplitudes, a study is presented on the expected feasibility of detecting defects by a full field imaging scheme based on a photorefractive interferometer that is configured as a vibrometer acting as a bandpass filter around a sideband frequency of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机械非线性边带振动成像的碳纤维增强板缺陷检测
采用激光多普勒扫描振动仪对含有锤击引起的次表面分层缺陷的碳纤维增强复合材料板进行光谱振动分量成像。图像显示缺陷位置产生了边带,反映了调节缺陷附近应力-应变行为的高振幅低频振动和低振幅高频探头振动之间的机械非线性诱导混合。在这项工作中,使用多频探头来解决混合系数在实际中与频率相关的问题。基于测量的边带振幅,研究了基于光折变干涉仪的全场成像方案检测缺陷的预期可行性,该方案被配置为振动计,在感兴趣的边带频率周围充当带通滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1