Yida Pang, Mengjiao Lu, Hyeonji Rha, Wenchao Yang, Amit Sharma, Yao Sun, Jong Seung Kim
{"title":"Lighting up plants with near-infrared fluorescence probes","authors":"Yida Pang, Mengjiao Lu, Hyeonji Rha, Wenchao Yang, Amit Sharma, Yao Sun, Jong Seung Kim","doi":"10.1007/s11426-023-1815-9","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescence imaging is a non-invasive and highly sensitive bioimaging technique that has shown remarkable strides in plant science. It enables real-time monitoring and analysis of biological and pathological processes in plants by labeling specific molecular or cellular structures with fluorescent probes. However, tissue scattering and phytochrome interference have been obstacles for conventional fluorescence imaging of plants in the ultraviolet and visible spectrum, resulting in unsatisfactory imaging quality. Fortunately, advances in near-infrared (NIR) fluorescence imaging technology (650–900 nm) offer superior spatial-temporal resolution and reduced tissue scattering, which is sure to improve plant imaging quality. In this review, we summarize recent progress in the development of NIR fluorescence imaging probes and their applications for <i>in vivo</i> plant imaging and the identification of plant-related biomolecules. We hope this review provides a new perspective for plant science research and highlights NIR fluorescence imaging as a powerful tool for analyzing plant physiology, adaptive mechanisms, and coping with environmental stress in the near future.</p></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 3","pages":"774 - 787"},"PeriodicalIF":10.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11426-023-1815-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1815-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence imaging is a non-invasive and highly sensitive bioimaging technique that has shown remarkable strides in plant science. It enables real-time monitoring and analysis of biological and pathological processes in plants by labeling specific molecular or cellular structures with fluorescent probes. However, tissue scattering and phytochrome interference have been obstacles for conventional fluorescence imaging of plants in the ultraviolet and visible spectrum, resulting in unsatisfactory imaging quality. Fortunately, advances in near-infrared (NIR) fluorescence imaging technology (650–900 nm) offer superior spatial-temporal resolution and reduced tissue scattering, which is sure to improve plant imaging quality. In this review, we summarize recent progress in the development of NIR fluorescence imaging probes and their applications for in vivo plant imaging and the identification of plant-related biomolecules. We hope this review provides a new perspective for plant science research and highlights NIR fluorescence imaging as a powerful tool for analyzing plant physiology, adaptive mechanisms, and coping with environmental stress in the near future.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.