{"title":"Quintessential Inflation and curvaton reheating","authors":"Abhineet Agarwal, Sabit Bekov, Kairat Myrzakulov","doi":"10.1142/s021827182350092x","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a model of quintessential inflation based upon inverse hyperbolic potential. We employ curvaton mechanism for reheating which is more efficient than gravitational particle production; the mechanism complies with nucleosynthesis constraint due to relic gravity waves. We obtain a lower bound on the coupling constant [Formula: see text] that governs the interaction of curvaton with matter fields. We study curvaton decay before domination and decay after domination and plot the allowed region in the parameter space in both cases.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"1 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021827182350092x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider a model of quintessential inflation based upon inverse hyperbolic potential. We employ curvaton mechanism for reheating which is more efficient than gravitational particle production; the mechanism complies with nucleosynthesis constraint due to relic gravity waves. We obtain a lower bound on the coupling constant [Formula: see text] that governs the interaction of curvaton with matter fields. We study curvaton decay before domination and decay after domination and plot the allowed region in the parameter space in both cases.
期刊介绍:
Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.