A Scalable Recommendation System Approach for a Companies — Seniors Matching

IF 0.3 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Semantic Computing Pub Date : 2023-03-29 DOI:10.1142/s1793351x23610019
Kevin Cedric Guyard, Michel Deriaz
{"title":"A Scalable Recommendation System Approach for a Companies — Seniors Matching","authors":"Kevin Cedric Guyard, Michel Deriaz","doi":"10.1142/s1793351x23610019","DOIUrl":null,"url":null,"abstract":"Recommendation systems are becoming more and more present in our daily lives, whether it is for suggesting items to buy, movies to watch or music to listen. They can be used in a large number of contexts. In this paper, we propose the use of a recommendation system in the context of a recruitment platform. The use of the recommendation system allows to obtain precise profile recommendations based on the competences of a candidate to meet the stated requirements and to avoid companies to have to perform a very time-consuming manual sorting of the candidates. Thus, this paper presents the context in which we propose this recommendation system, the data preprocessing, the general approach based on a hybrid content-based filtering (CBF) and similarity index (SI) system, as well as the means implemented to reduce the computational cost of such a system with the increasing evolution of the platform.","PeriodicalId":43471,"journal":{"name":"International Journal of Semantic Computing","volume":"363 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x23610019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Recommendation systems are becoming more and more present in our daily lives, whether it is for suggesting items to buy, movies to watch or music to listen. They can be used in a large number of contexts. In this paper, we propose the use of a recommendation system in the context of a recruitment platform. The use of the recommendation system allows to obtain precise profile recommendations based on the competences of a candidate to meet the stated requirements and to avoid companies to have to perform a very time-consuming manual sorting of the candidates. Thus, this paper presents the context in which we propose this recommendation system, the data preprocessing, the general approach based on a hybrid content-based filtering (CBF) and similarity index (SI) system, as well as the means implemented to reduce the computational cost of such a system with the increasing evolution of the platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向公司的可扩展推荐系统方法——老年人匹配
推荐系统越来越多地出现在我们的日常生活中,无论是推荐要买的东西,看的电影还是听的音乐。它们可以在很多上下文中使用。在本文中,我们提出在招聘平台的背景下使用推荐系统。使用推荐系统可以根据候选人的能力获得精确的个人资料推荐,以满足规定的要求,并避免公司不得不对候选人进行非常耗时的手动排序。因此,本文介绍了我们提出该推荐系统的背景,数据预处理,基于基于内容的混合过滤(CBF)和相似指数(SI)系统的一般方法,以及随着平台的不断发展而实现的降低该系统计算成本的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Semantic Computing
International Journal of Semantic Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
1.70
自引率
12.50%
发文量
39
期刊最新文献
Model-Agnostic Zero-Shot Intent Detection via Contrastive Transfer Learning A 15-Category Audio Dataset for Drones and An Audio-based UAV Classification Using Machine Learning Automatic Domain-Adaptive Sentiment Analysis with SentiMap Basic Evaluation and Scoring of Energy Use in Range Image Curvature Determination Accuracy enhancement of industrial robots based on visual servoing using optimal adaptive rbfnn integral terminal fractional-order super-twisting algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1