Efficient Evaluation of Natural Stochastic Policies in Offline Reinforcement Learning

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-09-27 DOI:10.1093/biomet/asad059
Nathan Kallus, Masatoshi Uehara
{"title":"Efficient Evaluation of Natural Stochastic Policies in Offline Reinforcement Learning","authors":"Nathan Kallus, Masatoshi Uehara","doi":"10.1093/biomet/asad059","DOIUrl":null,"url":null,"abstract":"We study the efficient off-policy evaluation of natural stochastic policies, which are defined in terms of deviations from the behavior policy. This is a departure from the literature on off-policy evaluation where most work consider the evaluation of explicitly specified policies. Crucially, offline reinforcement learning with natural stochastic policies can help alleviate issues of weak overlap, lead to policies that build upon current practice, and improve policies' implementability in practice. Compared with the classic case of a pre-specified evaluation policy, when evaluating natural stochastic policies, the efficiency bound, which measures the best-achievable estimation error, is inflated since the evaluation policy itself is unknown. In this paper, we derive the efficiency bounds of two major types of natural stochastic policies: tilting policies and modified treatment policies. We then propose efficient nonparametric estimators that attain the efficiency bounds under very lax conditions. These also enjoy a (partial) double robustness property.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

We study the efficient off-policy evaluation of natural stochastic policies, which are defined in terms of deviations from the behavior policy. This is a departure from the literature on off-policy evaluation where most work consider the evaluation of explicitly specified policies. Crucially, offline reinforcement learning with natural stochastic policies can help alleviate issues of weak overlap, lead to policies that build upon current practice, and improve policies' implementability in practice. Compared with the classic case of a pre-specified evaluation policy, when evaluating natural stochastic policies, the efficiency bound, which measures the best-achievable estimation error, is inflated since the evaluation policy itself is unknown. In this paper, we derive the efficiency bounds of two major types of natural stochastic policies: tilting policies and modified treatment policies. We then propose efficient nonparametric estimators that attain the efficiency bounds under very lax conditions. These also enjoy a (partial) double robustness property.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离线强化学习中自然随机策略的有效评价
我们研究了自然随机策略的有效离政策评估,自然随机策略是根据偏离行为策略来定义的。这与非政策评估的文献不同,在非政策评估中,大多数工作都考虑对明确规定的政策进行评估。至关重要的是,使用自然随机策略的离线强化学习可以帮助缓解弱重叠问题,产生基于当前实践的策略,并提高策略在实践中的可实施性。与经典的预先设定评估策略相比,在评估自然随机策略时,由于评估策略本身是未知的,衡量最佳可实现估计误差的效率界被夸大了。本文导出了两大类自然随机策略的效率界:倾斜策略和修正处理策略。然后我们提出有效的非参数估计,在非常宽松的条件下达到效率界。它们还具有(部分)双重鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1