Input Selection Drives Molecular Logic Gate Design

Analytica Pub Date : 2023-11-07 DOI:10.3390/analytica4040033
Francielly T. Souto, Gleiston G. Dias
{"title":"Input Selection Drives Molecular Logic Gate Design","authors":"Francielly T. Souto, Gleiston G. Dias","doi":"10.3390/analytica4040033","DOIUrl":null,"url":null,"abstract":"Optical detection devices have become an analytical tool of interest in diverse fields of science. The search for methods to identify and quantify different compounds has transposed this curiosity into a necessity, since some constituents threaten the safety of life in all its forms. In this context, 30 years ago, Prof. Prasanna de Silva presented the idea of sensors as Molecular Logic Gates (MLGs): a molecule that performs a logical operation based on one or more inputs (analytes) resulting in an output (optical modification such as fluorescence or absorption). In this review, we explore the implementation of MLGs based on the interference of a second input (second analyte) in suppressing or even blocking a first input (first analyte), often resulting in INHIBIT-type gates. This approach is interesting because it is not related to attached detecting groups in the MLG but to the relation between the first and the second input. In this sense, flexible and versatile MLGs can be straightforwardly designed based on input selection. To illustrate these cases, we selected examples seeking to diversify the inputs (first analytes and interfering analytes), outputs (turn on, turn off), optical response (fluorescent/colorimetric), and applicability of these MLGs.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"65 S1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4040033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical detection devices have become an analytical tool of interest in diverse fields of science. The search for methods to identify and quantify different compounds has transposed this curiosity into a necessity, since some constituents threaten the safety of life in all its forms. In this context, 30 years ago, Prof. Prasanna de Silva presented the idea of sensors as Molecular Logic Gates (MLGs): a molecule that performs a logical operation based on one or more inputs (analytes) resulting in an output (optical modification such as fluorescence or absorption). In this review, we explore the implementation of MLGs based on the interference of a second input (second analyte) in suppressing or even blocking a first input (first analyte), often resulting in INHIBIT-type gates. This approach is interesting because it is not related to attached detecting groups in the MLG but to the relation between the first and the second input. In this sense, flexible and versatile MLGs can be straightforwardly designed based on input selection. To illustrate these cases, we selected examples seeking to diversify the inputs (first analytes and interfering analytes), outputs (turn on, turn off), optical response (fluorescent/colorimetric), and applicability of these MLGs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输入选择驱动分子逻辑门设计
光学探测装置已成为各个科学领域都感兴趣的分析工具。寻找识别和量化不同化合物的方法已经把这种好奇心变成了一种必需品,因为一些成分以各种形式威胁着生命的安全。在此背景下,30年前,Prasanna de Silva教授提出了传感器作为分子逻辑门(mlg)的想法:一种基于一个或多个输入(分析物)执行逻辑操作的分子,从而产生输出(荧光或吸收等光学修饰)。在这篇综述中,我们探讨了基于第二输入(第二分析物)的干扰来抑制甚至阻断第一输入(第一分析物)的mlg的实现,通常导致inhibition型门。这种方法很有趣,因为它与MLG中附加的检测组无关,而是与第一个和第二个输入之间的关系有关。从这个意义上说,灵活和通用的mlg可以根据输入选择直接设计。为了说明这些情况,我们选择了一些例子来寻求多样化的输入(第一分析物和干扰分析物),输出(打开,关闭),光学响应(荧光/比色),以及这些mlg的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions Assessment of Lycopene Levels in Dried Watermelon Pomace: A Sustainable Approach to Waste Reduction and Nutrient Valorization Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.) Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1