Timmo Weidner, Vincent Taupin, Sylvie Demouchy, Karine Gouriet, Antoine Guitton, Patrick Cordier, Alexandre MUSSI
{"title":"From Electron Tomography of Dislocations to Field Dislocation Mechanics: Application to Olivine","authors":"Timmo Weidner, Vincent Taupin, Sylvie Demouchy, Karine Gouriet, Antoine Guitton, Patrick Cordier, Alexandre MUSSI","doi":"10.1088/1361-651x/ad0a42","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new procedure to extract information from electron tomography and use them as an input in a field dislocation mechanics. Dislocation electron tomography is an experimental technique that provides three-dimensional information on dislocation lines and Burgers vectors within a thin foil. The characterized 3D dislocation lines are used to construct the spatial distribution of the equivalent Nye dislocation density tensor. The model dislocation lattice incompatibility equation and stress balance equation are solved with a spectral code based on fast Fourier transform algorithms. As an output of the model, one obtains the three-dimensional distribution of mechanical fields, such as strains, rotations, stresses, resolved shear stresses and energy, inside the material. To assess the potential of the method, we consider two regions from a previously compressed olivine sample. Our results reveal significant local variations in local stress fields and resolved shear stresses in various slip systems, which can impact the strong plastic anisotropy of olivine and the activation of different dislocation slip systems. It also evidences the built-up of kinematic hardening down to the nanometre scale.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"315 7","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad0a42","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We propose a new procedure to extract information from electron tomography and use them as an input in a field dislocation mechanics. Dislocation electron tomography is an experimental technique that provides three-dimensional information on dislocation lines and Burgers vectors within a thin foil. The characterized 3D dislocation lines are used to construct the spatial distribution of the equivalent Nye dislocation density tensor. The model dislocation lattice incompatibility equation and stress balance equation are solved with a spectral code based on fast Fourier transform algorithms. As an output of the model, one obtains the three-dimensional distribution of mechanical fields, such as strains, rotations, stresses, resolved shear stresses and energy, inside the material. To assess the potential of the method, we consider two regions from a previously compressed olivine sample. Our results reveal significant local variations in local stress fields and resolved shear stresses in various slip systems, which can impact the strong plastic anisotropy of olivine and the activation of different dislocation slip systems. It also evidences the built-up of kinematic hardening down to the nanometre scale.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.