Semidefinite Relaxation Methods for Tensor Absolute Value Equations

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2023-11-07 DOI:10.1137/22m1539137
Anwa Zhou, Kun Liu, Jinyan Fan
{"title":"Semidefinite Relaxation Methods for Tensor Absolute Value Equations","authors":"Anwa Zhou, Kun Liu, Jinyan Fan","doi":"10.1137/22m1539137","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the tensor absolute value equations (TAVEs). When one tensor is row diagonal with odd order, we show that the TAVEs can be reduced to an algebraic equation; when it is row diagonal and nonsingular with even order, we prove that the TAVEs is equivalent to a polynomial complementary problem. When no tensor is row diagonal, we formulate the TAVEs equivalently as polynomial optimization problems in two different ways. Each of them can be solved by Lasserre’s hierarchy of semidefinite relaxations. The finite convergence properties are also discussed. Numerical experiments show the efficiency of the proposed methods.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1539137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the tensor absolute value equations (TAVEs). When one tensor is row diagonal with odd order, we show that the TAVEs can be reduced to an algebraic equation; when it is row diagonal and nonsingular with even order, we prove that the TAVEs is equivalent to a polynomial complementary problem. When no tensor is row diagonal, we formulate the TAVEs equivalently as polynomial optimization problems in two different ways. Each of them can be solved by Lasserre’s hierarchy of semidefinite relaxations. The finite convergence properties are also discussed. Numerical experiments show the efficiency of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
张量绝对值方程的半定松弛法
本文考虑张量绝对值方程(TAVEs)。当一个张量是奇数阶的行对角线时,我们证明了TAVEs可以简化为一个代数方程;当它是行对角且是非奇异的偶阶问题时,我们证明了TAVEs等价于一个多项式互补问题。当没有张量是行对角线时,我们以两种不同的方式将TAVEs等效地表述为多项式优化问题。它们中的每一个都可以用Lasserre的半定松弛层次来求解。讨论了有限收敛性质。数值实验证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1