Free-induction-decay magnetometer with enhanced optical pumping

IF 1.8 4区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America B-optical Physics Pub Date : 2023-09-27 DOI:10.1364/josab.501086
Dominic Hunter, Marcin Mrozowski, Allan McWilliam, Stuart Ingleby, Terry Dyer, Paul Griffin, Erling Riis
{"title":"Free-induction-decay magnetometer with enhanced optical pumping","authors":"Dominic Hunter, Marcin Mrozowski, Allan McWilliam, Stuart Ingleby, Terry Dyer, Paul Griffin, Erling Riis","doi":"10.1364/josab.501086","DOIUrl":null,"url":null,"abstract":"Spin preparation prior to a free-induction-decay (FID) measurement can be adversely affected by transverse bias fields, particularly in the geophysical field range. A strategy that enhances the spin polarization accumulated before readout is demonstrated, by synchronizing optical pumping with a magnetic field pulse that supersedes any transverse fields by over two orders of magnitude. The pulsed magnetic field is generated along the optical pumping axis using a compact electromagnetic coil pair encompassing a micro-electromechanical systems (MEMS) vapor cell. The coils also resistively heat the cesium vapor to the optimal atomic density without spurious magnetic field contributions as they are rapidly demagnetized to approximately zero field during spin readout. The demagnetization process is analyzed electronically, and directly with a FID measurement, to confirm that the residual magnetic field is minimal during detection. The sensitivity performance of this technique is compared to existing optical pumping modalities across a wide magnetic field range. A noise floor sensitivity of 238fT/Hz was achieved in a field of approximately 50 µT, in close agreement with the Cramér–Rao lower bound predicted noise density of 258fT/Hz.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.501086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spin preparation prior to a free-induction-decay (FID) measurement can be adversely affected by transverse bias fields, particularly in the geophysical field range. A strategy that enhances the spin polarization accumulated before readout is demonstrated, by synchronizing optical pumping with a magnetic field pulse that supersedes any transverse fields by over two orders of magnitude. The pulsed magnetic field is generated along the optical pumping axis using a compact electromagnetic coil pair encompassing a micro-electromechanical systems (MEMS) vapor cell. The coils also resistively heat the cesium vapor to the optimal atomic density without spurious magnetic field contributions as they are rapidly demagnetized to approximately zero field during spin readout. The demagnetization process is analyzed electronically, and directly with a FID measurement, to confirm that the residual magnetic field is minimal during detection. The sensitivity performance of this technique is compared to existing optical pumping modalities across a wide magnetic field range. A noise floor sensitivity of 238fT/Hz was achieved in a field of approximately 50 µT, in close agreement with the Cramér–Rao lower bound predicted noise density of 258fT/Hz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有增强光泵浦的自由感应衰减磁强计
自由电感衰减(FID)测量前的自旋制备会受到横向偏置场的不利影响,特别是在地球物理场范围内。一种策略,提高自旋极化积累前读出演示,通过同步光泵浦与磁场脉冲,取代任何横向场超过两个数量级。脉冲磁场沿光泵浦轴产生,使用紧凑的电磁线圈对包围微机电系统(MEMS)蒸气池。线圈也电阻加热铯蒸气到最佳的原子密度,没有虚假的磁场贡献,因为它们在自旋读出期间迅速退磁到大约为零的场。消磁过程通过电子方式进行分析,并直接使用FID测量,以确认在检测过程中残余磁场最小。将该技术的灵敏度性能与现有的光泵浦方式在宽磁场范围内进行了比较。在大约50µT的场域中,噪声底灵敏度达到238fT/Hz,与cram r - rao下限预测的258fT/Hz噪声密度密切一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
5.30%
发文量
374
审稿时长
2.1 months
期刊介绍: The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include: Advanced Instrumentation and Measurements Fiber Optics and Fiber Lasers Lasers and Other Light Sources from THz to XUV Light-Induced Phenomena Nonlinear and High Field Optics Optical Materials Optics Modes and Structured Light Optomechanics Metamaterials Nanomaterials Photonics and Semiconductor Optics Physical Optics Plasmonics Quantum Optics and Entanglement Quantum Key Distribution Spectroscopy and Atomic or Molecular Optics Superresolution and Advanced Imaging Surface Optics Ultrafast Optical Phenomena Wave Guiding and Optical Confinement JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.
期刊最新文献
Cascaded sum frequency generation of ultraviolet laser source at 228 nm based on stimulated Raman adiabatic passage Machine learning for self-tuning mode-locked lasers with multiple transmission filters Surface plasmon resonance sensor based on a D-shaped hollow microstructured fiber with bimetallic film Coherence as an indicator to discern electromagnetically induced transparency and Autler-Townes splitting Quantum Electrodynamics with a Nonmoving Dielectric Sphere: Quantizing Lorenz-Mie Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1