{"title":"Application of Financial Big Data Analysis Method Based on Collaborative Filtering Algorithm in Supply Chain Enterprises","authors":"Tao Wang, Tianbang Song","doi":"10.1142/s0218843023500223","DOIUrl":null,"url":null,"abstract":"At present, the financial situation of China’s supply chain finance is still relatively unstable, and there are still some problems between supply chain enterprises and banks such as asymmetric information, insufficient model innovation and high operational risks. Based on this, this paper proposes and constructs a risk control model of financial big data analysis based on collaborative filtering algorithm. The purpose of this study is to realize the resource integration of supply chain enterprises and optimize the logistics chain, financial chain and information chain through the analysis of financial big data based on collaborative filtering algorithm, provide quality services for supply chain enterprises and good support for solving the financing problems of small and medium-sized enterprises. In order to verify the feasibility of the model, an experimental analysis is carried out. The experimental results show that this model has good scalability and operability, and the algorithm itself also has good scalability. The results of empirical analysis further verify that the design method in this paper has a good recommendation effect in terms of matching degree and user satisfaction. Compared with other risk control models, it is more practical and feasible. This research has certain practical significance for the financial management of supply chain enterprises.","PeriodicalId":54966,"journal":{"name":"International Journal of Cooperative Information Systems","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cooperative Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218843023500223","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
At present, the financial situation of China’s supply chain finance is still relatively unstable, and there are still some problems between supply chain enterprises and banks such as asymmetric information, insufficient model innovation and high operational risks. Based on this, this paper proposes and constructs a risk control model of financial big data analysis based on collaborative filtering algorithm. The purpose of this study is to realize the resource integration of supply chain enterprises and optimize the logistics chain, financial chain and information chain through the analysis of financial big data based on collaborative filtering algorithm, provide quality services for supply chain enterprises and good support for solving the financing problems of small and medium-sized enterprises. In order to verify the feasibility of the model, an experimental analysis is carried out. The experimental results show that this model has good scalability and operability, and the algorithm itself also has good scalability. The results of empirical analysis further verify that the design method in this paper has a good recommendation effect in terms of matching degree and user satisfaction. Compared with other risk control models, it is more practical and feasible. This research has certain practical significance for the financial management of supply chain enterprises.
期刊介绍:
The paradigm for the next generation of information systems (ISs) will involve large numbers of ISs distributed over large, complex computer/communication networks. Such ISs will manage or have access to large amounts of information and computing services and will interoperate as required. These support individual or collaborative human work. Communication among component systems will be done using protocols that range from conventional ones to those based on distributed AI. We call such next generation ISs Cooperative Information Systems (CIS).
The International Journal of Cooperative Information Systems (IJCIS) addresses the intricacies of cooperative work in the framework of distributed interoperable information systems. It provides a forum for the presentation and dissemination of research covering all aspects of CIS design, requirements, functionality, implementation, deployment, and evolution.