When is there enough data to create a global statistic?

Q3 Decision Sciences Statistical Journal of the IAOS Pub Date : 2023-05-30 DOI:10.3233/sji-220090
Daniel Gerszon Mahler, Umar Serajuddin, Hiroko Maeda
{"title":"When is there enough data to create a global statistic?","authors":"Daniel Gerszon Mahler, Umar Serajuddin, Hiroko Maeda","doi":"10.3233/sji-220090","DOIUrl":null,"url":null,"abstract":"To monitor progress towards global goals such as the Sustainable Development Goals, global statistics are needed. Yet cross-country datasets are rarely truly global, creating a trade-off for producers of global statistics: the lower the data coverage threshold for disseminating global statistics, the more can be made available, but the lower accuracy they will have. We quantify this availability-accuracy trade-off by running more than 10 million simulations on the World Development Indicators. We show that if the fraction of the world’s population on which one lacks data is x, then one should expect to be 0.37 *x standard deviations off the true global value, and risk being as much as x standard deviations off. We show the robustness of this result to various assumptions and give recommendations on when there is enough data to create global statistics. Though the decision will be context specific, in a baseline scenario we suggest not to create global statistics when there is data for less than half of the world’s population.","PeriodicalId":55877,"journal":{"name":"Statistical Journal of the IAOS","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Journal of the IAOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sji-220090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

To monitor progress towards global goals such as the Sustainable Development Goals, global statistics are needed. Yet cross-country datasets are rarely truly global, creating a trade-off for producers of global statistics: the lower the data coverage threshold for disseminating global statistics, the more can be made available, but the lower accuracy they will have. We quantify this availability-accuracy trade-off by running more than 10 million simulations on the World Development Indicators. We show that if the fraction of the world’s population on which one lacks data is x, then one should expect to be 0.37 *x standard deviations off the true global value, and risk being as much as x standard deviations off. We show the robustness of this result to various assumptions and give recommendations on when there is enough data to create global statistics. Though the decision will be context specific, in a baseline scenario we suggest not to create global statistics when there is data for less than half of the world’s population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
什么时候有足够的数据来创建一个全球统计?
为了监测可持续发展目标等全球目标的进展,需要全球统计数据。然而,跨国数据集很少是真正全球性的,这给全球统计数据的生产者带来了一种权衡:传播全球统计数据的数据覆盖阈值越低,可以获得的数据就越多,但它们的准确性就越低。我们通过对世界发展指标进行1000多万次模拟,量化了这种可用性与准确性之间的权衡。我们表明,如果缺乏数据的世界人口比例为x,那么人们应该期望与真实全球值相差0.37 *x个标准差,并且风险与x个标准差相差。我们展示了该结果对各种假设的稳健性,并就何时有足够的数据来创建全局统计提供了建议。虽然决定将根据具体情况而定,但在基线情景中,我们建议在有不到世界人口一半的数据时不要创建全球统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Journal of the IAOS
Statistical Journal of the IAOS Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.30
自引率
0.00%
发文量
116
期刊介绍: This is the flagship journal of the International Association for Official Statistics and is expected to be widely circulated and subscribed to by individuals and institutions in all parts of the world. The main aim of the Journal is to support the IAOS mission by publishing articles to promote the understanding and advancement of official statistics and to foster the development of effective and efficient official statistical services on a global basis. Papers are expected to be of wide interest to readers. Such papers may or may not contain strictly original material. All papers are refereed.
期刊最新文献
‘Good data are used data’: Interview with Stefan Schweinfest1 Towards the 4th population census in Ethiopia: Some insights into the feasibility of the Post-Enumeration Survey Using machine learning algorithms to identify farms on the 2022 Census of Agriculture Food price inflation nowcasting and monitoring FAOSTAT Food Value Chain Domain implementation: Input Output modelling and analytical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1