{"title":"Numerical Investigation of an Unmanned Aerial Vehicle Launch from Military Transport Aircrafts","authors":"Andreas Goerttler, Christian Schnepf","doi":"10.2514/1.c037360","DOIUrl":null,"url":null,"abstract":"Launching a fixed-wing unmanned aerial vehicle (UAV) out of the cargo hold of a flying transport aircraft (TA) is numerically investigated. A numerical tool chain is established to capture the dynamic motion of the UAV during launch, in which the DLR-TAU Code flow solver is coupled with a flight mechanics tool. A parameter study investigates how the UAV launch speed, position, and orientation relative to the loading platform of two different TAs affect its trajectory and aerodynamic behaviors. Furthermore, the influence of the angle of attack of the TA on the UAV trajectory and pitch angle is analyzed. This information will help design a launch mechanism that ensures a safe separation and aerodynamically stable flight after launch.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"69 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037360","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Launching a fixed-wing unmanned aerial vehicle (UAV) out of the cargo hold of a flying transport aircraft (TA) is numerically investigated. A numerical tool chain is established to capture the dynamic motion of the UAV during launch, in which the DLR-TAU Code flow solver is coupled with a flight mechanics tool. A parameter study investigates how the UAV launch speed, position, and orientation relative to the loading platform of two different TAs affect its trajectory and aerodynamic behaviors. Furthermore, the influence of the angle of attack of the TA on the UAV trajectory and pitch angle is analyzed. This information will help design a launch mechanism that ensures a safe separation and aerodynamically stable flight after launch.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.