A Pathway to Assess Genetic Variation of Wheat Germplasm by Multi-dimensional Traits with Digital Images

IF 7.6 1区 农林科学 Q1 AGRONOMY Plant Phenomics Pub Date : 2023-11-07 DOI:10.34133/plantphenomics.0119
Tingting Wu, Peng Shen, Jianlong Dai, Yuntao Ma, Yi Feng
{"title":"A Pathway to Assess Genetic Variation of Wheat Germplasm by Multi-dimensional Traits with Digital Images","authors":"Tingting Wu, Peng Shen, Jianlong Dai, Yuntao Ma, Yi Feng","doi":"10.34133/plantphenomics.0119","DOIUrl":null,"url":null,"abstract":"In this paper, a new pathway was proposed to assess the germplasm genetic variation by multidimensional traits of wheat seeds generated from digital images. A machine vision platform was first established to reconstruct wheat germplasm 3D model from omnidirectional image sequences of wheat seeds. Then, multidimensional traits were conducted from the wheat germplasm 3D model, including seed length, width, thickness, surface area, volume, maximum projection area, roundness, and 2 new defined traits called cardioid-derived area and the index of adjustment (J index). To assess genetic variation of wheat germplasm, phenotypic coefficients of variation (PCVs), analysis of variance (ANOVA), clustering, and the defined genetic variation factor (GVF) were calculated using the extracted morphological traits of 15 wheat accessions comprising 13 offspring and 2 parents. The measurement accuracy of 3D reconstruction model is demonstrated by the correlation coefficient (R) and root mean square errors (RMSEs). Results of PCVs among all the traits show importance of multidimensional traits, as seed volume (22.4%), cardioid-derived area (16.97%), and maximum projection area (14.67%). ANOVA shows a highly significance difference among all accessions. The results of GVF innovatively reflect the connection between genotypic variance and phenotypic traits from parents to offspring. Our results confirmed that extracting multidimensional traits from digital images is a promising high-throughput and cost-efficient pathway that can be included as a valuable approach in genetic variation assessment, and it can provide useful information for genetic improvement, preservation, and evaluation of wheat germplasm.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"38 2","pages":"0"},"PeriodicalIF":7.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0119","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new pathway was proposed to assess the germplasm genetic variation by multidimensional traits of wheat seeds generated from digital images. A machine vision platform was first established to reconstruct wheat germplasm 3D model from omnidirectional image sequences of wheat seeds. Then, multidimensional traits were conducted from the wheat germplasm 3D model, including seed length, width, thickness, surface area, volume, maximum projection area, roundness, and 2 new defined traits called cardioid-derived area and the index of adjustment (J index). To assess genetic variation of wheat germplasm, phenotypic coefficients of variation (PCVs), analysis of variance (ANOVA), clustering, and the defined genetic variation factor (GVF) were calculated using the extracted morphological traits of 15 wheat accessions comprising 13 offspring and 2 parents. The measurement accuracy of 3D reconstruction model is demonstrated by the correlation coefficient (R) and root mean square errors (RMSEs). Results of PCVs among all the traits show importance of multidimensional traits, as seed volume (22.4%), cardioid-derived area (16.97%), and maximum projection area (14.67%). ANOVA shows a highly significance difference among all accessions. The results of GVF innovatively reflect the connection between genotypic variance and phenotypic traits from parents to offspring. Our results confirmed that extracting multidimensional traits from digital images is a promising high-throughput and cost-efficient pathway that can be included as a valuable approach in genetic variation assessment, and it can provide useful information for genetic improvement, preservation, and evaluation of wheat germplasm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字图像的小麦种质资源多维性状遗传变异评价途径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
期刊最新文献
From Images to Loci: Applying 3D Deep Learning to Enable Multivariate and Multitemporal Digital Phenotyping and Mapping the Genetics Underlying Nitrogen Use Efficiency in Wheat. Informed-Learning-Guided Visual Question Answering Model of Crop Disease. Coupling PROSPECT with Prior Estimation of Leaf Structure to Improve the Retrieval of Leaf Nitrogen Content in Ginkgo from Bidirectional Reflectance Factor Spectra. A Field-to-Parameter Pipeline for Analyzing and Simulating Root System Architecture of Woody Perennials: Application to Grapevine Rootstocks. Estimating Leaf Nitrogen Accumulation Considering Vertical Heterogeneity Using Multiangular Unmanned Aerial Vehicle Remote Sensing in Wheat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1