Miguel Ángel Blanco-Rodríguez, Aitor Ameztegui, Pere Gelabert, Marcos Rodrigues, Lluís Coll
{"title":"Short-term recovery of post-fire vegetation is primarily limited by drought in Mediterranean forest ecosystems","authors":"Miguel Ángel Blanco-Rodríguez, Aitor Ameztegui, Pere Gelabert, Marcos Rodrigues, Lluís Coll","doi":"10.1186/s42408-023-00228-w","DOIUrl":null,"url":null,"abstract":"Abstract Background Climate change is altering the fire regime and compromising the post-fire recovery of vegetation worldwide. To understand the factors influencing post-fire vegetation cover restoration, we calculated the recovery of vegetation in 200,000 hectares of western Mediterranean forest burned by 268 wildfires over a 27-year period (1988–2015). We used time series of the Tasseled Cap Transformation Brightness (TCTB) spectral transformation over Landsat imagery to calculate vegetation recovery. Then, we quantified the importance of the main drivers of post-fire vegetation recovery (climate, fire severity, and topography) along an aridity gradient (semi-arid, sub-humid, and humid) using Random Forest models. Results In most models (99.7%), drought duration was the most important factor, negatively affecting post-fire recovery especially in the extremes of the aridity gradient. Fire severity was the second most important factor for vegetation cover recovery, with its effect varying along the aridity gradient: there was a positive relationship between fire severity and recovery in sub-humid and humid areas, while semi-arid areas showed the opposite pattern. Topographic variables were the least important driver and had a marginal effect on post-fire recovery. Additionally, semi-arid areas exhibited a low mean recovery rate, indicating limitations in the short-term recovery after a fire. Conclusions Our study highlights the key role that drought duration plays in the recovery of vegetation after wildfires in the Mediterranean basin and, particularly, in forests located in climatically extreme areas. The results suggest that the predicted increase in drought duration coupled with a higher frequency and intensity of large fires may modify the structure and composition of Mediterranean forest ecosystems. Our analysis provides relevant information to evaluate and design adaptive management strategies in post-fire recovery hotspots of Mediterranean forest ecosystems.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"12 10","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42408-023-00228-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background Climate change is altering the fire regime and compromising the post-fire recovery of vegetation worldwide. To understand the factors influencing post-fire vegetation cover restoration, we calculated the recovery of vegetation in 200,000 hectares of western Mediterranean forest burned by 268 wildfires over a 27-year period (1988–2015). We used time series of the Tasseled Cap Transformation Brightness (TCTB) spectral transformation over Landsat imagery to calculate vegetation recovery. Then, we quantified the importance of the main drivers of post-fire vegetation recovery (climate, fire severity, and topography) along an aridity gradient (semi-arid, sub-humid, and humid) using Random Forest models. Results In most models (99.7%), drought duration was the most important factor, negatively affecting post-fire recovery especially in the extremes of the aridity gradient. Fire severity was the second most important factor for vegetation cover recovery, with its effect varying along the aridity gradient: there was a positive relationship between fire severity and recovery in sub-humid and humid areas, while semi-arid areas showed the opposite pattern. Topographic variables were the least important driver and had a marginal effect on post-fire recovery. Additionally, semi-arid areas exhibited a low mean recovery rate, indicating limitations in the short-term recovery after a fire. Conclusions Our study highlights the key role that drought duration plays in the recovery of vegetation after wildfires in the Mediterranean basin and, particularly, in forests located in climatically extreme areas. The results suggest that the predicted increase in drought duration coupled with a higher frequency and intensity of large fires may modify the structure and composition of Mediterranean forest ecosystems. Our analysis provides relevant information to evaluate and design adaptive management strategies in post-fire recovery hotspots of Mediterranean forest ecosystems.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.