Structural Geology of the Mount Meager Volcanic Complex, BC, Canada: Implications for geothermal energy and geohazards

IF 1.3 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Canadian Journal of Earth Sciences Pub Date : 2023-10-05 DOI:10.1139/cjes-2023-0077
Mahmud Muhammad, Glyn Williams-Jones, René W. Barendregt
{"title":"Structural Geology of the Mount Meager Volcanic Complex, BC, Canada: Implications for geothermal energy and geohazards","authors":"Mahmud Muhammad, Glyn Williams-Jones, René W. Barendregt","doi":"10.1139/cjes-2023-0077","DOIUrl":null,"url":null,"abstract":"The Mount Meager Volcanic Complex (Qwe̓lqwe̓lústen or Mt. Meager) coincides tectonically with the intra-arc to back-arc transition zone and exhibits the loci of strain partitioning in response to a rapid change in orientation of the Pemberton and Garibaldi Arc segments which are coeval with a shift in Pacific plate motion after 5 Ma. This strain partition is manifested through development of a transpressional deformation from 5 Ma to 1.9 Ma at the latitude of Mt. Meager. Mt. Meager is an active volcanic system with at least two explosive eruptions in the last 25,000 years, the most recent occurring around 2360 BP. Additionally, it is the site of the largest landslide in Canadian history, which occurred during the summer of 2010, originating from the southeastern side the massif. During early exploration at Mt. Meager, geothermal boreholes drilled to 3 km reached 270°C but did not find sufficient permeability to sustain self-flowing conditions. To understand the geological challenges in Mt. Meager's geothermal exploration, we analyzed outcrop-scale faults and folds, incorporating structural mapping, volcanic rock paleomagnetism, and radiometric dating to establish kinematic history and kinematic compatibility of structural geology features including faults and folds. Our findings suggest that stress partitioning during the last 5 Ma resulted in formation of a transpressional structure exhibited as an elongate and rhomboidal structure at Mt. Meager with anomalously high topographic elevations which led to ENE-WSW crustal shortening and exhumation of crystalline basement. This new structural geology model improves our understanding of the geothermal reservoir and potentially significant geohazards.
","PeriodicalId":9567,"journal":{"name":"Canadian Journal of Earth Sciences","volume":"123 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjes-2023-0077","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Mount Meager Volcanic Complex (Qwe̓lqwe̓lústen or Mt. Meager) coincides tectonically with the intra-arc to back-arc transition zone and exhibits the loci of strain partitioning in response to a rapid change in orientation of the Pemberton and Garibaldi Arc segments which are coeval with a shift in Pacific plate motion after 5 Ma. This strain partition is manifested through development of a transpressional deformation from 5 Ma to 1.9 Ma at the latitude of Mt. Meager. Mt. Meager is an active volcanic system with at least two explosive eruptions in the last 25,000 years, the most recent occurring around 2360 BP. Additionally, it is the site of the largest landslide in Canadian history, which occurred during the summer of 2010, originating from the southeastern side the massif. During early exploration at Mt. Meager, geothermal boreholes drilled to 3 km reached 270°C but did not find sufficient permeability to sustain self-flowing conditions. To understand the geological challenges in Mt. Meager's geothermal exploration, we analyzed outcrop-scale faults and folds, incorporating structural mapping, volcanic rock paleomagnetism, and radiometric dating to establish kinematic history and kinematic compatibility of structural geology features including faults and folds. Our findings suggest that stress partitioning during the last 5 Ma resulted in formation of a transpressional structure exhibited as an elongate and rhomboidal structure at Mt. Meager with anomalously high topographic elevations which led to ENE-WSW crustal shortening and exhumation of crystalline basement. This new structural geology model improves our understanding of the geothermal reservoir and potentially significant geohazards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加拿大卑诗省蒂尼火山杂岩的构造地质:对地热能和地质灾害的启示
蒂尼火山杂岩(Qwe æ lqwe æ lústen或Mt.蒂尼)在构造上与弧内-弧后过渡带重合,并表现出应变分配位点,以响应与太平洋板块运动移位同时发生的Pemberton弧段和Garibaldi弧段方向的快速变化。这种应变分区表现在贫山纬度5 ~ 1.9 Ma的挤压变形发育上。蒂尼山是一个活跃的火山系统,在过去的25000年里至少有两次爆发,最近的一次发生在2360年前。此外,它是加拿大历史上最大的山体滑坡的地点,发生在2010年夏天,起源于地块的东南侧。在蒂尼山的早期勘探中,钻了3公里的地热钻孔达到了270°C,但没有发现足够的渗透率来维持自流动状态。为了解蒂尼山地热勘探面临的地质挑战,我们分析了露头尺度的断层和褶皱,结合构造填图、火山岩古地磁和放射性测年,建立了包括断层和褶皱在内的构造地质特征的运动历史和运动相容性。结果表明,近5 Ma的应力分块作用导致贫山形成了一种跨扭构造,表现为细长菱形结构,地形海拔异常高,导致ENE-WSW型地壳缩短和结晶基底的发掘。这种新的构造地质模型提高了我们对地热储层和潜在重大地质灾害的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences 地学-地球科学综合
CiteScore
2.80
自引率
7.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The Canadian Journal of Earth Sciences reports current research in climate and environmental geoscience; geoarchaeology and forensic geoscience; geochronology and geochemistry; geophysics; GIS and geomatics; hydrology; mineralogy and petrology; mining and engineering geology; ore deposits and economic geology; paleontology, petroleum geology and basin analysis; physical geography and Quaternary geoscience; planetary geoscience; sedimentology and stratigraphy; soil sciences; and structural geology and tectonics. It also publishes special issues that focus on information and studies about a particular segment of earth sciences.
期刊最新文献
Sulphide petrology and ore genesis of the stratabound Sheep Creek sediment-hosted Zn-Pb-Ag-Sn prospect, and U–Pb zircon constraints on the timing of magmatism in the northern Alaska Range Analysis of the late Hirnantian and early Rhuddanian Unconformities of Southern Ontario: Evidence for Far Field Glacioeustatic Effects Exploring the Moho beneath the Northern Canadian Cordillera, with seismically constrained gravity inversion. ADDITIONAL ALBERTOSAURUS SARCOPHAGUS (TYRANNOSAURIDAE, ALBERTOSAURINAE) MATERIAL FROM THE DANEK BONEBED OF EDMONTON, ALBERTA, CANADA WITH EVIDENCE OF CANNIBALISM. Late history of glacial Lake Agassiz in northwestern Ontario, Canada: A case study in the Sandy Lake basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1