{"title":"Dynamic Rupture Models of the 2016 ML 5.8 Gyeongju, South Korea, Earthquake, Constrained by a Kinematic Rupture Model and Seismic Waveform Data","authors":"Seok Goo Song, Benchun Duan","doi":"10.1785/0120230099","DOIUrl":null,"url":null,"abstract":"ABSTRACT The ML 5.8 earthquake that jolted Gyeongju in southeastern Korea in 2016 was the country’s largest inland event since instrumental seismic monitoring began in 1978. We developed dynamic rupture models of the Gyeongju event constrained by near-source ground-motion data using full 3D spontaneous dynamic rupture modeling with the slip-weakening friction law. Based on our results, we propose two simple dynamic rupture models with constant strength excess (SE) and slip-weakening distance (Dc) that produce near-source ground-motion waveforms compatible with recorded ones in the low-frequency band. Both dynamic models exhibit relatively large stress-drop values, consistent with previous estimates constrained by source spectrum analyses. The fracture energy estimates were also larger than those predicted by a scaling relationship with the seismic moment. The dynamic features constrained in this study by spontaneous rupture modeling and waveform comparison may help understand the source and ground-motion characteristics of future large events in southeastern Korea and thus the seismic hazard of the region.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"27 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230099","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The ML 5.8 earthquake that jolted Gyeongju in southeastern Korea in 2016 was the country’s largest inland event since instrumental seismic monitoring began in 1978. We developed dynamic rupture models of the Gyeongju event constrained by near-source ground-motion data using full 3D spontaneous dynamic rupture modeling with the slip-weakening friction law. Based on our results, we propose two simple dynamic rupture models with constant strength excess (SE) and slip-weakening distance (Dc) that produce near-source ground-motion waveforms compatible with recorded ones in the low-frequency band. Both dynamic models exhibit relatively large stress-drop values, consistent with previous estimates constrained by source spectrum analyses. The fracture energy estimates were also larger than those predicted by a scaling relationship with the seismic moment. The dynamic features constrained in this study by spontaneous rupture modeling and waveform comparison may help understand the source and ground-motion characteristics of future large events in southeastern Korea and thus the seismic hazard of the region.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.