D. Samchenko, O. Tykhenko, L. Zozulya, N. Thibulnik
{"title":"ПРОЄКТУВАННЯ ЕЛЕКТРОМАГНІТНИХ ЕКРАНІВ ГАРАНТОВАНОЇ ЕФЕКТИВНОСТІ ДЛЯ ГАЛУЗЕЙ ЦИВІЛЬНОЇ БЕЗПЕКИ ТА ЕЛЕКТРОМАГНІТНОЇ СУМІСНОСТІ","authors":"D. Samchenko, O. Tykhenko, L. Zozulya, N. Thibulnik","doi":"10.26906/sunz.2023.3.167","DOIUrl":null,"url":null,"abstract":"Розглянуто засади проектування композиційних матеріалів з гарантованим (потрібними) ефективностями. Надано основні співвідношення для оцінювання ефективності проектованого матеріалу. Головною умовою отримання матеріалу з малими коефіцієнтами відбиття електромагнітних хвиль є наближення хвильового опору поверхневого шару до опору повітря. Розрахунки показали, що для забезпечення мінімально прийнятного коефіцієнта відбиття (0,25–0,30) і достатніми коефіцієнтами поглинання електромагнітної енергії (-20 дБ за потужністю) матеріал повинен бути багатошаровим з середнім шаром високих поглинальних властивостей. Це забезпечується його високою електропровідністю. Можливим варіантом є монотонне зростання електрофізичних властивостей від зовнішньої поверхні до внутрішньої. За необхідності одночасного екранування електромагнітного поля ультрависоких та вищих частот та магнітного поля наднизьких частот (промислової та її гармонік і інтергармонік) матеріал повинен містити магнітний наповнювач. Його об'ємна кількість визначається за формулою Оделевського. Коефіцієнт відбиття у цьому випадку визначається співвідношенням абсолютних магнітної та діелектричної проникностей поверхневого шару. Для спрощення проектування матеріалу феромагнітні частинки наповнювача повинні бути електроізольованими. При цьому радіопоглинальний матеріал (або шар матеріалу) повинен мати у структурі розгалужені кола провідності. У процесі проектування матеріалу при обиранні матриці обов'язковим є врахування не тільки діелектричних проникностей матеріалів, а й тангенсів кутів діелектричних втрат.","PeriodicalId":488657,"journal":{"name":"Sistemi upravlìnnâ, navìgacìï ta zvʼâzku","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemi upravlìnnâ, navìgacìï ta zvʼâzku","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26906/sunz.2023.3.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Розглянуто засади проектування композиційних матеріалів з гарантованим (потрібними) ефективностями. Надано основні співвідношення для оцінювання ефективності проектованого матеріалу. Головною умовою отримання матеріалу з малими коефіцієнтами відбиття електромагнітних хвиль є наближення хвильового опору поверхневого шару до опору повітря. Розрахунки показали, що для забезпечення мінімально прийнятного коефіцієнта відбиття (0,25–0,30) і достатніми коефіцієнтами поглинання електромагнітної енергії (-20 дБ за потужністю) матеріал повинен бути багатошаровим з середнім шаром високих поглинальних властивостей. Це забезпечується його високою електропровідністю. Можливим варіантом є монотонне зростання електрофізичних властивостей від зовнішньої поверхні до внутрішньої. За необхідності одночасного екранування електромагнітного поля ультрависоких та вищих частот та магнітного поля наднизьких частот (промислової та її гармонік і інтергармонік) матеріал повинен містити магнітний наповнювач. Його об'ємна кількість визначається за формулою Оделевського. Коефіцієнт відбиття у цьому випадку визначається співвідношенням абсолютних магнітної та діелектричної проникностей поверхневого шару. Для спрощення проектування матеріалу феромагнітні частинки наповнювача повинні бути електроізольованими. При цьому радіопоглинальний матеріал (або шар матеріалу) повинен мати у структурі розгалужені кола провідності. У процесі проектування матеріалу при обиранні матриці обов'язковим є врахування не тільки діелектричних проникностей матеріалів, а й тангенсів кутів діелектричних втрат.