{"title":"Multiscale Numerical Schemes for the Collisional Vlasov Equation in the Finite Larmor Radius Approximation Regime","authors":"Anaïs Crestetto, Nicolas Crouseilles, Damien Prel","doi":"10.1137/22m1496839","DOIUrl":null,"url":null,"abstract":"This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"141 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1496839","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.
期刊介绍:
Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods.
By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.