{"title":"Solution structures and thermodynamics of cis-trans X-Pro conformers of a novel single disulfide conopeptide","authors":"","doi":"10.56042/ijbb.v60i9.4061","DOIUrl":null,"url":null,"abstract":"The conopeptide Mo1853 (MW = 1853 Da) consists of 17 residues and a single disulfide bond. Structural studies using homonuclear solution NMR methods (2D 1H,1H DQF-COSY, TOCSY, NOESY and ROESY spectra) revealed that Mo1853 exists as two equally populated cis and trans X–Pro peptide bond conformers which are in slow exchange regime, compared to the chemical shift time scale. Temperature dependence of chemical shifts was measured and using coalescence temperature of two amide protons, the rate of exchange and the free energy of activation for the conformational exchange were determined to be 59 Hz and ≈ 67.2 kJ mol−1, respectively, at 318 K. Additional evidence for this conformational equilibrium was also observed as exchange correlation peaks in the 2D-NOESY and ROESY spectra. Tertiary structures of both the cis (PDB ID 8K3N) and trans (PDB ID 8K3M) conformers were determined using distance restraints, backbone dihedral angle restraints, the disulfide bond restraint and the cis or trans conformation of the X–Pro peptide bond. The trans conformer of Mo1853 is stabilized by hydrogen bonds while the cis conformer seems to be stabilized predominantly by hydrophobic interactions. This was further corroborated by the fact that at lower temperatures, the hydrophobic interactions became weaker reducing the population of the cis conformer with respect to that of the trans conformer. The cis and trans X–Pro peptide bond conformational exchange could be another means to enhance the structural variability of the conopeptides and could have significance in the synergistic functional response caused by the cone snail venom peptides.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijbb.v60i9.4061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The conopeptide Mo1853 (MW = 1853 Da) consists of 17 residues and a single disulfide bond. Structural studies using homonuclear solution NMR methods (2D 1H,1H DQF-COSY, TOCSY, NOESY and ROESY spectra) revealed that Mo1853 exists as two equally populated cis and trans X–Pro peptide bond conformers which are in slow exchange regime, compared to the chemical shift time scale. Temperature dependence of chemical shifts was measured and using coalescence temperature of two amide protons, the rate of exchange and the free energy of activation for the conformational exchange were determined to be 59 Hz and ≈ 67.2 kJ mol−1, respectively, at 318 K. Additional evidence for this conformational equilibrium was also observed as exchange correlation peaks in the 2D-NOESY and ROESY spectra. Tertiary structures of both the cis (PDB ID 8K3N) and trans (PDB ID 8K3M) conformers were determined using distance restraints, backbone dihedral angle restraints, the disulfide bond restraint and the cis or trans conformation of the X–Pro peptide bond. The trans conformer of Mo1853 is stabilized by hydrogen bonds while the cis conformer seems to be stabilized predominantly by hydrophobic interactions. This was further corroborated by the fact that at lower temperatures, the hydrophobic interactions became weaker reducing the population of the cis conformer with respect to that of the trans conformer. The cis and trans X–Pro peptide bond conformational exchange could be another means to enhance the structural variability of the conopeptides and could have significance in the synergistic functional response caused by the cone snail venom peptides.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.