{"title":"Climate Variability & Establishment of Rainfall Threshold Line for Landslide Hazards in Rangamati, Bangladesh","authors":"Mahmuda Khatun, A.T.M.Shakhawat Hossain, Hossain Md. Sayem","doi":"10.4236/ojg.2023.139041","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the impact of extreme rainfall events on landslides under current and past climate scenarios. Rainfall-triggered landslides are analyzed by rainfall estimates, derived using statistics of events. It is established that recent climate changes, mainly temperature and rainfall patterns have significantly increased the rainfall-induced landslide hazards in the Rangamati district, Bangladesh. It is also observed that the temperature and rainfall of Rangamati had increased gradually during the last 40 years (1981-2021). On 13 June 2017, a series of landslides triggered by heavy monsoon rains (300 mm/24 h) occurred and killed more than 112 people in the Rangamati hill district, Bangladesh. The highest annual decade rainfall is 3816 mm, recorded in 2010-21. A relationship between causalities and the number of events has also been established. The analysis shows that both antecedent and single-day major rainfall patterns can influence sliding events. It is established that monsoonal rainfall (June-September) can significantly influence catastrophic landslide hazard events. Finally, two rainfall threshold lines for the researched area are constructed based on antecedent and single-day major rainfall occurrences, as well as the number of fatalities caused by landslides. Total rainfall of 100 mm (16.66 mm/day) during six days appears to define the minimum rainfall that has led to shallow landslides/slope failures, while 210 mm (35 mm/day) within six days appears to define the lowest rainfall that could be a cause of catastrophic landslide in Rangamati district.","PeriodicalId":142678,"journal":{"name":"Open Journal of Geology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojg.2023.139041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to evaluate the impact of extreme rainfall events on landslides under current and past climate scenarios. Rainfall-triggered landslides are analyzed by rainfall estimates, derived using statistics of events. It is established that recent climate changes, mainly temperature and rainfall patterns have significantly increased the rainfall-induced landslide hazards in the Rangamati district, Bangladesh. It is also observed that the temperature and rainfall of Rangamati had increased gradually during the last 40 years (1981-2021). On 13 June 2017, a series of landslides triggered by heavy monsoon rains (300 mm/24 h) occurred and killed more than 112 people in the Rangamati hill district, Bangladesh. The highest annual decade rainfall is 3816 mm, recorded in 2010-21. A relationship between causalities and the number of events has also been established. The analysis shows that both antecedent and single-day major rainfall patterns can influence sliding events. It is established that monsoonal rainfall (June-September) can significantly influence catastrophic landslide hazard events. Finally, two rainfall threshold lines for the researched area are constructed based on antecedent and single-day major rainfall occurrences, as well as the number of fatalities caused by landslides. Total rainfall of 100 mm (16.66 mm/day) during six days appears to define the minimum rainfall that has led to shallow landslides/slope failures, while 210 mm (35 mm/day) within six days appears to define the lowest rainfall that could be a cause of catastrophic landslide in Rangamati district.