Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery

None Geng Xiao-Bin, None Li Ding-Gen, None Xu Bo
{"title":"Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery","authors":"None Geng Xiao-Bin, None Li Ding-Gen, None Xu Bo","doi":"10.7498/aps.72.20230824","DOIUrl":null,"url":null,"abstract":"Growth of lithium dendrites in solid state batteries is an important factor that disturbs their commercial applications. The growth of lithium dendrites at the interface of lithium metal anode will not only lead to the decrease of battery energy efficiency, but also cause combustion, explosion and other safety problems. In order to explore the factors and methods that inhibit the growth of lithium dendrites, the phase-field theory is used to simulate the growth of lithium dendrites in polymer solid electrolyte batteries, and a phase-field model of lithium dendrite growth coupled with mechanical stress and thermal field is established. The effects of key physical factors such as ambient temperature, solid electrolyte Young’s modulus and external stress on dendrite growth and their acting principles are discussed and analyzed. The results show that under the conditions of high temperature, high solid electrolyte Young’s modulus and external stress, the growth of lithium dendrites is slow, the number of long dendrites is small, and the electrodeposition is more uniform. In addition, the effects of Young’s modulus of solid electrolyte and ambient temperature on the growth of lithium dendrites in a common range are compared with each other. It is found that the inhibition effect of changing Young’s modulus of solid electrolyte on the maximum length of lithium dendrites is 19% higher than that caused by the change of ambient temperature.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20230824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growth of lithium dendrites in solid state batteries is an important factor that disturbs their commercial applications. The growth of lithium dendrites at the interface of lithium metal anode will not only lead to the decrease of battery energy efficiency, but also cause combustion, explosion and other safety problems. In order to explore the factors and methods that inhibit the growth of lithium dendrites, the phase-field theory is used to simulate the growth of lithium dendrites in polymer solid electrolyte batteries, and a phase-field model of lithium dendrite growth coupled with mechanical stress and thermal field is established. The effects of key physical factors such as ambient temperature, solid electrolyte Young’s modulus and external stress on dendrite growth and their acting principles are discussed and analyzed. The results show that under the conditions of high temperature, high solid electrolyte Young’s modulus and external stress, the growth of lithium dendrites is slow, the number of long dendrites is small, and the electrodeposition is more uniform. In addition, the effects of Young’s modulus of solid electrolyte and ambient temperature on the growth of lithium dendrites in a common range are compared with each other. It is found that the inhibition effect of changing Young’s modulus of solid electrolyte on the maximum length of lithium dendrites is 19% higher than that caused by the change of ambient temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体电解质电池中锂枝晶生长的机械应力-热力学相场模拟
固态电池中锂枝晶的生长是影响其商业应用的一个重要因素。锂金属负极界面处锂枝晶的生长不仅会导致电池能量效率的下降,还会引起燃烧、爆炸等安全问题。为了探索抑制锂枝晶生长的因素和方法,运用相场理论对聚合物固体电解质电池中锂枝晶的生长进行了模拟,建立了机械应力和热场耦合作用下锂枝晶生长的相场模型。讨论和分析了环境温度、固体电解质杨氏模量和外部应力等关键物理因素对枝晶生长的影响及其作用原理。结果表明:在高温、高固体电解质杨氏模量和外加应力条件下,锂枝晶生长缓慢,长枝晶数量少,电沉积更加均匀;此外,还比较了固体电解质杨氏模量和环境温度对锂枝晶生长的影响。研究发现,固体电解质杨氏模量变化对锂枝晶最大长度的抑制作用比环境温度变化的抑制作用高19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1