{"title":"Compatible finite element methods for geophysical fluid dynamics","authors":"Colin J. Cotter","doi":"10.1017/s0962492923000028","DOIUrl":null,"url":null,"abstract":"This article surveys research on the application of compatible finite element methods to large-scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa’s C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge–Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretizing the transport terms that arise in dynamical core equation systems, and provide some example discretizations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretizations, Poisson bracket discretizations and consistent vorticity transport.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"21 1","pages":"0"},"PeriodicalIF":16.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0962492923000028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
This article surveys research on the application of compatible finite element methods to large-scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa’s C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge–Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretizing the transport terms that arise in dynamical core equation systems, and provide some example discretizations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretizations, Poisson bracket discretizations and consistent vorticity transport.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.