Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites

ZHANG Yongzheng, LIU Lei, LIU Qi, XU Guangkui
{"title":"Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites","authors":"ZHANG Yongzheng, LIU Lei, LIU Qi, XU Guangkui","doi":"10.21656/1000-0887.440056","DOIUrl":null,"url":null,"abstract":"C/SiC composites have been widely used in aerospace, national defense, and chemical industries due to their excellent mechanical and thermal properties. Accurate knowledge about the mechanical/thermal properties of C/SiC composites is very important for their efficient application in related fields. Based on the representative volume element (RVE) and periodic boundary conditions, a micro/meso single-cell model for C/SiC composites was established in view of the non-uniform and multi-scale characteristics of fiber bundles, such as the volume fraction, the interweaving mode, and the weaving dimension. The finite element software ABAQUS was used to predict the micro-scale thermal and mechanical properties of the fiber bundle, and the fiber bundle properties were introduced into the mesoscopic model to analyze and obtain the macroscopic thermal and mechanical properties of the composite. Based on this multi-scale correlation analysis method, the thermal conductivity and thermal expansion coefficient of fiber bundles and C/SiC composites were further studied at the operating temperatures ranging from 27~1 227 ℃. The study has certain guiding significance for the application of C/SiC composites in engineering.","PeriodicalId":8341,"journal":{"name":"Applied Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

C/SiC composites have been widely used in aerospace, national defense, and chemical industries due to their excellent mechanical and thermal properties. Accurate knowledge about the mechanical/thermal properties of C/SiC composites is very important for their efficient application in related fields. Based on the representative volume element (RVE) and periodic boundary conditions, a micro/meso single-cell model for C/SiC composites was established in view of the non-uniform and multi-scale characteristics of fiber bundles, such as the volume fraction, the interweaving mode, and the weaving dimension. The finite element software ABAQUS was used to predict the micro-scale thermal and mechanical properties of the fiber bundle, and the fiber bundle properties were introduced into the mesoscopic model to analyze and obtain the macroscopic thermal and mechanical properties of the composite. Based on this multi-scale correlation analysis method, the thermal conductivity and thermal expansion coefficient of fiber bundles and C/SiC composites were further studied at the operating temperatures ranging from 27~1 227 ℃. The study has certain guiding significance for the application of C/SiC composites in engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C/SiC编织复合材料热力学性能的多尺度预测
C/SiC复合材料以其优异的力学性能和热性能在航空航天、国防、化工等领域得到了广泛的应用。准确了解C/SiC复合材料的力学/热性能对其在相关领域的有效应用至关重要。基于代表性体积元(RVE)和周期边界条件,针对纤维束的体积分数、交织方式和编织尺寸等非均匀性和多尺度特征,建立了C/SiC复合材料微细观单胞模型。利用有限元软件ABAQUS对纤维束的微观热力学性能进行预测,并将纤维束的性能引入细观模型,分析得到复合材料的宏观热力学性能。基于这种多尺度相关分析方法,进一步研究了在27~1 227℃工作温度下,纤维束和C/SiC复合材料的导热系数和热膨胀系数。该研究对C/SiC复合材料的工程应用具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematics and Mechanics
Applied Mathematics and Mechanics Mathematics-Applied Mathematics
CiteScore
1.20
自引率
0.00%
发文量
6042
期刊最新文献
Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control A theory for three-dimensional response of micropolar plates A low-frequency pure metal metamaterial absorber with continuously tunable stiffness A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1