{"title":"Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites","authors":"ZHANG Yongzheng, LIU Lei, LIU Qi, XU Guangkui","doi":"10.21656/1000-0887.440056","DOIUrl":null,"url":null,"abstract":"C/SiC composites have been widely used in aerospace, national defense, and chemical industries due to their excellent mechanical and thermal properties. Accurate knowledge about the mechanical/thermal properties of C/SiC composites is very important for their efficient application in related fields. Based on the representative volume element (RVE) and periodic boundary conditions, a micro/meso single-cell model for C/SiC composites was established in view of the non-uniform and multi-scale characteristics of fiber bundles, such as the volume fraction, the interweaving mode, and the weaving dimension. The finite element software ABAQUS was used to predict the micro-scale thermal and mechanical properties of the fiber bundle, and the fiber bundle properties were introduced into the mesoscopic model to analyze and obtain the macroscopic thermal and mechanical properties of the composite. Based on this multi-scale correlation analysis method, the thermal conductivity and thermal expansion coefficient of fiber bundles and C/SiC composites were further studied at the operating temperatures ranging from 27~1 227 ℃. The study has certain guiding significance for the application of C/SiC composites in engineering.","PeriodicalId":8341,"journal":{"name":"应用数学和力学","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学和力学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
C/SiC composites have been widely used in aerospace, national defense, and chemical industries due to their excellent mechanical and thermal properties. Accurate knowledge about the mechanical/thermal properties of C/SiC composites is very important for their efficient application in related fields. Based on the representative volume element (RVE) and periodic boundary conditions, a micro/meso single-cell model for C/SiC composites was established in view of the non-uniform and multi-scale characteristics of fiber bundles, such as the volume fraction, the interweaving mode, and the weaving dimension. The finite element software ABAQUS was used to predict the micro-scale thermal and mechanical properties of the fiber bundle, and the fiber bundle properties were introduced into the mesoscopic model to analyze and obtain the macroscopic thermal and mechanical properties of the composite. Based on this multi-scale correlation analysis method, the thermal conductivity and thermal expansion coefficient of fiber bundles and C/SiC composites were further studied at the operating temperatures ranging from 27~1 227 ℃. The study has certain guiding significance for the application of C/SiC composites in engineering.
期刊介绍:
Applied Mathematics and Mechanics was founded in 1980 by CHIEN Wei-zang, a celebrated Chinese scientist in mechanics and mathematics. The current editor in chief is Professor LU Tianjian from Nanjing University of Aeronautics and Astronautics. The Journal was a quarterly in the beginning, a bimonthly the next year, and then a monthly ever since 1985. It carries original research papers on mechanics, mathematical methods in mechanics and interdisciplinary mechanics based on artificial intelligence mathematics. It also strengthens attention to mechanical issues in interdisciplinary fields such as mechanics and information networks, system control, life sciences, ecological sciences, new energy, and new materials, making due contributions to promoting the development of new productive forces.