{"title":"The MacWilliams identity for the skew rank metric","authors":"Izzy Friedlander, Thanasis Bouganis, Maximilien Gadouleau","doi":"10.3934/amc.2023045","DOIUrl":null,"url":null,"abstract":"The weight distribution of an error correcting code is a crucial statistic in determining its performance. One key tool for relating the weight of a code to that of it's dual is the MacWilliams Identity, first developed for the Hamming metric. This identity has two forms: one is a functional transformation of the weight enumerators, while the other is a direct relation of the weight distributions via (generalised) Krawtchouk polynomials. The functional transformation form can in particular be used to derive important moment identities for the weight distribution of codes. In this paper, we focus on codes in the skew rank metric. In these codes, the codewords are skew-symmetric matrices, and the distance between two matrices is the skew rank metric, which is half the rank of their difference. This paper develops a $ q $-analog MacWilliams Identity in the form of a functional transformation for codes based on skew-symmetric matrices under their associated skew rank metric. The method introduces a skew-$ q $ algebra and uses generalised Krawtchouk polynomials. Based on this new MacWilliams Identity, we then derive several moments of the skew rank distribution for these codes.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"19 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/amc.2023045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The weight distribution of an error correcting code is a crucial statistic in determining its performance. One key tool for relating the weight of a code to that of it's dual is the MacWilliams Identity, first developed for the Hamming metric. This identity has two forms: one is a functional transformation of the weight enumerators, while the other is a direct relation of the weight distributions via (generalised) Krawtchouk polynomials. The functional transformation form can in particular be used to derive important moment identities for the weight distribution of codes. In this paper, we focus on codes in the skew rank metric. In these codes, the codewords are skew-symmetric matrices, and the distance between two matrices is the skew rank metric, which is half the rank of their difference. This paper develops a $ q $-analog MacWilliams Identity in the form of a functional transformation for codes based on skew-symmetric matrices under their associated skew rank metric. The method introduces a skew-$ q $ algebra and uses generalised Krawtchouk polynomials. Based on this new MacWilliams Identity, we then derive several moments of the skew rank distribution for these codes.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.