Piezomagnetic vibration energy harvester with an amplifier

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-11-01 DOI:10.1016/j.taml.2023.100478
João Pedro Norenberg , Americo Cunha Jr , Piotr Wolszczak , Grzegorz Litak
{"title":"Piezomagnetic vibration energy harvester with an amplifier","authors":"João Pedro Norenberg ,&nbsp;Americo Cunha Jr ,&nbsp;Piotr Wolszczak ,&nbsp;Grzegorz Litak","doi":"10.1016/j.taml.2023.100478","DOIUrl":null,"url":null,"abstract":"<div><p>We study the effect of an amplification mechanism in a nonlinear vibration energy harvesting system where a ferromagnetic beam resonator is attached to the vibration source through an additional linear spring with a damper. The beam moves in the nonlinear double-well potential caused by interaction with two magnets. The piezoelectric patches with electrodes attached to the electrical circuit support mechanical energy transduction into electrical power. The results show that the additional spring can improve energy harvesting. By changing its stiffness, we observed various solutions. At the point of the optimal stiffness of the additional spring, the power output is amplified a few times depending on the excitation amplitude.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000491/pdfft?md5=d02a716d533829089c95a2ba24d74aaa&pid=1-s2.0-S2095034923000491-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000491","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the effect of an amplification mechanism in a nonlinear vibration energy harvesting system where a ferromagnetic beam resonator is attached to the vibration source through an additional linear spring with a damper. The beam moves in the nonlinear double-well potential caused by interaction with two magnets. The piezoelectric patches with electrodes attached to the electrical circuit support mechanical energy transduction into electrical power. The results show that the additional spring can improve energy harvesting. By changing its stiffness, we observed various solutions. At the point of the optimal stiffness of the additional spring, the power output is amplified a few times depending on the excitation amplitude.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带放大器的压磁振动能量采集器
本文研究了一种非线性振动能量收集系统的放大机制,该系统通过附加的带阻尼器的线性弹簧将铁磁光束谐振器连接到振动源上。光束在与两个磁体相互作用产生的非线性双阱势中运动。与电路相连的带有电极的压电片支持机械能转化为电能。结果表明,附加弹簧可以提高能量收集。通过改变其刚度,我们观察到不同的解。在附加弹簧的最佳刚度点,功率输出被放大几倍取决于激励幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1