Lidia Yaritza Martínez-Zamudio , Reyna Berenice González-González , Rafael G. Araújo , Jesús Alfredo Rodríguez Hernández , Elda A. Flores-Contreras , Elda M. Melchor-Martínez , Roberto Parra-Saldívar , Hafiz M.N. Iqbal
{"title":"Emerging pollutants removal from leachates and water bodies by nanozyme-based approaches","authors":"Lidia Yaritza Martínez-Zamudio , Reyna Berenice González-González , Rafael G. Araújo , Jesús Alfredo Rodríguez Hernández , Elda A. Flores-Contreras , Elda M. Melchor-Martínez , Roberto Parra-Saldívar , Hafiz M.N. Iqbal","doi":"10.1016/j.coesh.2023.100522","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous emerging pollutants, including pharmaceutical compounds, dyes, personal care products, endocrine-disrupting chemicals, and pesticides, are increasingly found in landfill leachates, groundwater, and surface water systems. Their persistence, bioaccumulation, and toxicity, even at low concentrations, represent a major environmental and human health concern. So far, diverse degradation treatment processes have been explored; enzyme-assisted methodologies have been recognized as greener, safer, less expensive, and eco-friendly alternatives. However, the limited reusability and instability of natural enzymes under typical harsh environmental conditions significantly hinder applicability. Thus, different strategies have emerged, such as the design of engineered modified enzymes, the immobilization of enzymes on nanomaterials, and the development of artificial enzymes. Nanomaterials with enzyme-like activities have emerged as artificial enzymatic tools that catalytically degrade toxic pollutants. Recent studies have reported excellent performances of enzymes in the removal of emerging contaminants. This review thoroughly examines the most recent developments in the use of nanozymes for the remediation of various aquatic matrices. We finalize by discussing the current challenges faced by nanozymology for water remediation treatments to provide insight into potential future research directions.</p></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"37 ","pages":"Article 100522"},"PeriodicalIF":6.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246858442300082X/pdfft?md5=b808ec1a991e9c40ba9ec468f0acbe18&pid=1-s2.0-S246858442300082X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Environmental Science and Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246858442300082X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous emerging pollutants, including pharmaceutical compounds, dyes, personal care products, endocrine-disrupting chemicals, and pesticides, are increasingly found in landfill leachates, groundwater, and surface water systems. Their persistence, bioaccumulation, and toxicity, even at low concentrations, represent a major environmental and human health concern. So far, diverse degradation treatment processes have been explored; enzyme-assisted methodologies have been recognized as greener, safer, less expensive, and eco-friendly alternatives. However, the limited reusability and instability of natural enzymes under typical harsh environmental conditions significantly hinder applicability. Thus, different strategies have emerged, such as the design of engineered modified enzymes, the immobilization of enzymes on nanomaterials, and the development of artificial enzymes. Nanomaterials with enzyme-like activities have emerged as artificial enzymatic tools that catalytically degrade toxic pollutants. Recent studies have reported excellent performances of enzymes in the removal of emerging contaminants. This review thoroughly examines the most recent developments in the use of nanozymes for the remediation of various aquatic matrices. We finalize by discussing the current challenges faced by nanozymology for water remediation treatments to provide insight into potential future research directions.