{"title":"An efficient determination of field distributions in E-plane dielectric loaded waveguides","authors":"Ahmet Aydoğan","doi":"10.1080/09205071.2023.2270477","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis paper proposes a new, fast, and efficient method for determining the electromagnetic field distribution in two-port E-plane dielectric-loaded uniform rectangular waveguides. The analysis region is divided into individual blocks in the absence and presence of dielectric obstacles. The non-zero electric and magnetic field components are constructed throughout the system via the proposed method by utilizing the generalized scattering matrix method between blocks for unimodal or multimodal excitation. The resulting field distributions are compared to those obtained from commercial software, with very close agreement achieved, but with a significantly reduced computational time for the proposed method. The method is applicable in a straightforward manner and has been tested on both a filter device with relatively complex geometry and a disjoint system with a modal coupling challenge between its elements. The field components' accuracy is also tested by calculating the Poynting vector along the system. Additionally, this approach provides the global scattering parameters at the physical ports as a co-product. The proposed method has the potential to be applied to various two-port networks by using the proposed method according to the considered problem.KEYWORDS: Cascaded systemsfield distributiongeneralized scattering matrixmicrowave devicesrectangular waveguide Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"23 3","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2270477","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThis paper proposes a new, fast, and efficient method for determining the electromagnetic field distribution in two-port E-plane dielectric-loaded uniform rectangular waveguides. The analysis region is divided into individual blocks in the absence and presence of dielectric obstacles. The non-zero electric and magnetic field components are constructed throughout the system via the proposed method by utilizing the generalized scattering matrix method between blocks for unimodal or multimodal excitation. The resulting field distributions are compared to those obtained from commercial software, with very close agreement achieved, but with a significantly reduced computational time for the proposed method. The method is applicable in a straightforward manner and has been tested on both a filter device with relatively complex geometry and a disjoint system with a modal coupling challenge between its elements. The field components' accuracy is also tested by calculating the Poynting vector along the system. Additionally, this approach provides the global scattering parameters at the physical ports as a co-product. The proposed method has the potential to be applied to various two-port networks by using the proposed method according to the considered problem.KEYWORDS: Cascaded systemsfield distributiongeneralized scattering matrixmicrowave devicesrectangular waveguide Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results.
The scope of this Journal remains broad and includes the following topics:
wave propagation theory
propagation in random media
waves in composites and amorphous materials
optical and millimeter wave techniques
fiber/waveguide optics
optical sensing
sub-micron structures
nano-optics and sub-wavelength effects
photonics and plasmonics
atmospherics and ionospheric effects on wave propagation
geophysical subsurface probing
remote sensing
inverse scattering
antenna theory and applications
fields and network theory
transients
radar measurements and applications
active experiments using space vehicles
electromagnetic compatibility and interferometry
medical applications and biological effects
ferrite devices
high power devices and systems
numerical methods
The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.