Soil Carbon Stock and Indices in Sandy Soil Affected by Eucalyptus Harvest Residue Management in the South of Brazil

IF 2.9 Q2 SOIL SCIENCE Soil Systems Pub Date : 2023-10-21 DOI:10.3390/soilsystems7040093
Jackson Freitas Brilhante de São José, Luciano Kayser Vargas, Bruno Britto Lisboa, Frederico Costa Beber Vieira, Josiléia Acordi Zanatta, Elias Frank Araujo, Cimelio Bayer
{"title":"Soil Carbon Stock and Indices in Sandy Soil Affected by Eucalyptus Harvest Residue Management in the South of Brazil","authors":"Jackson Freitas Brilhante de São José, Luciano Kayser Vargas, Bruno Britto Lisboa, Frederico Costa Beber Vieira, Josiléia Acordi Zanatta, Elias Frank Araujo, Cimelio Bayer","doi":"10.3390/soilsystems7040093","DOIUrl":null,"url":null,"abstract":"There has been limited research on the effect of eucalyptus harvest residue management on soil organic carbon (SOC) in subtropical environments. This research evaluated the effect on soil C indices of the following eucalyptus harvest residue managements: AR, with all forest remnants left on the soil; NB, where bark was removed; NBr, in which branches were removed; NR, which removed all residues; and NRs, which is same as NR but also used a shade net to prevent the litter from the new plantation from reaching the soil surface. C stocks within the soil depths of 0–20 cm and 0–100 cm increased linearly with the C input from eucalyptus harvest residues. In the layer of 0–20 cm, the lowest soil C retention rate was 0.23 Mg ha−1 year−1, in the NR treatment, while in the AR treatment, the retention rate was 0.68 Mg ha−1 year−1. In the 0–100 cm layer, the highest C retention rate was obtained in the AR (1.47 Mg ha−1 year−1). The residues showed a high humification coefficient (k1 = 0.23) and a high soil organic matter decomposition rate (k2 = 0.10). The carbon management index showed a close relationship with the C input and tree diameter at breast height.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"14 5","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7040093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

There has been limited research on the effect of eucalyptus harvest residue management on soil organic carbon (SOC) in subtropical environments. This research evaluated the effect on soil C indices of the following eucalyptus harvest residue managements: AR, with all forest remnants left on the soil; NB, where bark was removed; NBr, in which branches were removed; NR, which removed all residues; and NRs, which is same as NR but also used a shade net to prevent the litter from the new plantation from reaching the soil surface. C stocks within the soil depths of 0–20 cm and 0–100 cm increased linearly with the C input from eucalyptus harvest residues. In the layer of 0–20 cm, the lowest soil C retention rate was 0.23 Mg ha−1 year−1, in the NR treatment, while in the AR treatment, the retention rate was 0.68 Mg ha−1 year−1. In the 0–100 cm layer, the highest C retention rate was obtained in the AR (1.47 Mg ha−1 year−1). The residues showed a high humification coefficient (k1 = 0.23) and a high soil organic matter decomposition rate (k2 = 0.10). The carbon management index showed a close relationship with the C input and tree diameter at breast height.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴西南部桉叶采伐对沙质土壤碳储量及指数的影响
目前对亚热带桉树采伐剩余物管理对土壤有机碳(SOC)影响的研究较少。本研究评价了桉树采伐剩余物管理对土壤C指数的影响:AR,所有森林剩余物都留在土壤中;注意,树皮被去除;NBr,其中的分支被移除;NR,去除所有残留物;NRs与NR相同,但也使用遮荫网来防止新人工林的凋落物到达土壤表面。0 ~ 20 cm和0 ~ 100 cm土壤深度的碳储量随着桉树采伐剩余物的碳输入呈线性增加。在0 ~ 20 cm土层,NR处理的土壤碳保持率最低,为0.23 Mg ha−1年−1,AR处理的土壤碳保持率最低,为0.68 Mg ha−1年−1。在0 ~ 100 cm层,AR的碳滞留率最高(1.47 Mg ha−1 year−1)。腐殖化系数高(k1 = 0.23),有机质分解率高(k2 = 0.10)。碳管理指数与碳输入和胸高树径密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Systems
Soil Systems Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
5.30
自引率
5.70%
发文量
80
审稿时长
11 weeks
期刊最新文献
Structural Shifts in the Soil Prokaryotic Communities Marking the Podzol-Forming Process on Sand Dumps Soil Phytomining: Recent Developments—A Review Selenium and Heavy Metals in Soil–Plant System in a Hydrogeochemical Province with High Selenium Content in Groundwater: A Case Study of the Lower Dniester Valley Tillage and Cover Crop Systems Alter Soil Particle Size Distribution in Raised-Bed-and-Furrow Row-Crop Agroecosystems Shifts in Soil Bacterial Communities under Three-Year Fertilization Management and Multiple Cropping Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1