Pauline G. Lynch, Aritra Das, Shahzad Alam, Christopher C. Rich and Renee R. Frontiera*,
{"title":"Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide","authors":"Pauline G. Lynch, Aritra Das, Shahzad Alam, Christopher C. Rich and Renee R. Frontiera*, ","doi":"10.1021/acsphyschemau.3c00031","DOIUrl":null,"url":null,"abstract":"<p >Femtosecond stimulated Raman spectroscopy (FSRS) is a powerful nonlinear spectroscopic technique that probes changes in molecular and material structure with high temporal and spectral resolution. With proper spectral interpretation, this is equivalent to mapping out reactive pathways on highly anharmonic excited-state potential energy surfaces with femtosecond to picosecond time resolution. FSRS has been used to examine structural dynamics in a wide range of samples, including photoactive proteins, photovoltaic materials, plasmonic nanostructures, polymers, and a range of others, with experiments performed in multiple groups around the world. As the FSRS technique grows in popularity and is increasingly implemented in user facilities, there is a need for a widespread understanding of the methodology and best practices. In this review, we present a practical guide to FSRS, including discussions of instrumentation, as well as data acquisition and analysis. First, we describe common methods of generating the three pulses required for FSRS: the probe, Raman pump, and actinic pump, including a discussion of the parameters to consider when selecting a beam generation method. We then outline approaches for effective and efficient FSRS data acquisition. We discuss common data analysis techniques for FSRS, as well as more advanced analyses aimed at extracting small signals on a large background. We conclude with a discussion of some of the new directions for FSRS research, including spectromicroscopy. Overall, this review provides researchers with a practical handbook for FSRS as a technique with the aim of encouraging many scientists and engineers to use it in their research.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) is a powerful nonlinear spectroscopic technique that probes changes in molecular and material structure with high temporal and spectral resolution. With proper spectral interpretation, this is equivalent to mapping out reactive pathways on highly anharmonic excited-state potential energy surfaces with femtosecond to picosecond time resolution. FSRS has been used to examine structural dynamics in a wide range of samples, including photoactive proteins, photovoltaic materials, plasmonic nanostructures, polymers, and a range of others, with experiments performed in multiple groups around the world. As the FSRS technique grows in popularity and is increasingly implemented in user facilities, there is a need for a widespread understanding of the methodology and best practices. In this review, we present a practical guide to FSRS, including discussions of instrumentation, as well as data acquisition and analysis. First, we describe common methods of generating the three pulses required for FSRS: the probe, Raman pump, and actinic pump, including a discussion of the parameters to consider when selecting a beam generation method. We then outline approaches for effective and efficient FSRS data acquisition. We discuss common data analysis techniques for FSRS, as well as more advanced analyses aimed at extracting small signals on a large background. We conclude with a discussion of some of the new directions for FSRS research, including spectromicroscopy. Overall, this review provides researchers with a practical handbook for FSRS as a technique with the aim of encouraging many scientists and engineers to use it in their research.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis