{"title":"Disturbance-observer-based discrete-time sliding mode predictive control for overhead cranes with matched and unmatched disturbances","authors":"Rong Shi, Huimin Ouyang","doi":"10.1177/01423312231200685","DOIUrl":null,"url":null,"abstract":"In actual working environments, underactuated overhead cranes are susceptible to the adverse effects of the mechanical friction, uncertain parameters, and other disturbances. In particular, if the payload is disturbed (i.e. the unmatched disturbance), unpredictable swings would occur. Therefore, a discrete time sliding mode predictive control for overhead cranes based on a disturbance observer is proposed. Specifically, to eliminate uncertain disturbances, we propose a disturbance observer to estimate and compensate the disturbance to the input channel. Then, a new discrete sliding mode control law is obtained by adding the disturbance error estimator to the discrete sliding mode surface. In order to reduce the chattering inherent in the sliding mode, we integrate the discrete sliding mode law into the model predictive control, and use the rolling optimization and feedback correction of the predictive control, and finally output the optimal control law to act on the system. This control method can not only further improve the control accuracy, but also has sufficient robustness. Simulation and robustness experiments under various conditions verify the effectiveness of the proposed controller.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"4 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231200685","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In actual working environments, underactuated overhead cranes are susceptible to the adverse effects of the mechanical friction, uncertain parameters, and other disturbances. In particular, if the payload is disturbed (i.e. the unmatched disturbance), unpredictable swings would occur. Therefore, a discrete time sliding mode predictive control for overhead cranes based on a disturbance observer is proposed. Specifically, to eliminate uncertain disturbances, we propose a disturbance observer to estimate and compensate the disturbance to the input channel. Then, a new discrete sliding mode control law is obtained by adding the disturbance error estimator to the discrete sliding mode surface. In order to reduce the chattering inherent in the sliding mode, we integrate the discrete sliding mode law into the model predictive control, and use the rolling optimization and feedback correction of the predictive control, and finally output the optimal control law to act on the system. This control method can not only further improve the control accuracy, but also has sufficient robustness. Simulation and robustness experiments under various conditions verify the effectiveness of the proposed controller.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.