ANALYSIS OF CORONA PATIENTS USING UNCERTAINTY-BASED NON-PARAMETRIC MEDIAN TEST

IF 0.1 Q4 STATISTICS & PROBABILITY JP Journal of Biostatistics Pub Date : 2023-10-21 DOI:10.17654/0973514323018
Muhammad Aslam, Muhammad Saleem
{"title":"ANALYSIS OF CORONA PATIENTS USING UNCERTAINTY-BASED NON-PARAMETRIC MEDIAN TEST","authors":"Muhammad Aslam, Muhammad Saleem","doi":"10.17654/0973514323018","DOIUrl":null,"url":null,"abstract":"Duckworth’s test is a well-known non-parametric statistical test  used for comparing the medians of two populations. However, the conventional Duckworth’s test, based on classical statistics, is inadequate when dealing with data originating from neutrosophic populations. This paper presents a modified version of Duckworth’s test, specifically designed for neutrosophic statistics. This novel approach enables the application of Duckworth’s test to imprecise, uncertain, or data recorded in indeterminate intervals. The proposed test statistic under neutrosophic statistics is introduced and applied to real-world Covid-19 data. Through comprehensive analysis and simulation studies, the efficacy of the proposed Duckworth’s test under neutrosophic statistics is demonstrated to surpass that of the existing Duckworth’s test under classical statistics. Received: August 7, 2023Accepted: September 25, 2023","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":"56 2","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0973514323018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Duckworth’s test is a well-known non-parametric statistical test  used for comparing the medians of two populations. However, the conventional Duckworth’s test, based on classical statistics, is inadequate when dealing with data originating from neutrosophic populations. This paper presents a modified version of Duckworth’s test, specifically designed for neutrosophic statistics. This novel approach enables the application of Duckworth’s test to imprecise, uncertain, or data recorded in indeterminate intervals. The proposed test statistic under neutrosophic statistics is introduced and applied to real-world Covid-19 data. Through comprehensive analysis and simulation studies, the efficacy of the proposed Duckworth’s test under neutrosophic statistics is demonstrated to surpass that of the existing Duckworth’s test under classical statistics. Received: August 7, 2023Accepted: September 25, 2023
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不确定性的非参数中位数检验对冠状病毒患者的分析
达克沃斯检验是著名的非参数统计检验。用于比较两个总体的中位数。然而,基于经典统计学的传统达克沃斯检验在处理来自嗜中性粒细胞群体的数据时是不充分的。本文提出了达克沃斯测试的修改版本,专门为中性粒细胞统计设计。这种新颖的方法使Duckworth测试应用于不精确、不确定或不确定间隔记录的数据。介绍了在嗜中性统计下提出的检验统计量,并将其应用于实际的Covid-19数据。通过综合分析和仿真研究,证明了所提出的中性粒细胞统计下的Duckworth检验的有效性优于现有的经典统计下的Duckworth检验。收稿日期:2023年8月7日。收稿日期:2023年9月25日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JP Journal of Biostatistics
JP Journal of Biostatistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
23
期刊最新文献
GENTIAN VIOLET ADSORPTION ONTO BIOSORBENT CUPCAR: STATISTICAL PHYSICS MODELING AND CONSEQUENT INTERPRETATIONS TRANSLATION AND VALIDATION OF THE ORGANIZATIONAL COMMITMENT SCALE: SAUDIAN CULTURAL CONTEXT TUMOR CELL CLASSIFICATION: AN APPLICATION OF MULTIVARIATE DATA PROCESSING METHOD DESIGN OF AND CONTROL CHARTS FOR IMPRECISE DATA WITH MEDICAL APPLICATION CHARACTERISTICS OF SRIMIN-H DISTRIBUTION AND ITS BIOMEDICAL APPLICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1